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Architecting for Scale
Microservices at Netflix-Uber-Spotify Scale

Pooyan	Jamshidi

Foundations	of	
Software	Engineering Learning	Goals

• Understand	the	value	of	microservices for	building	complex	
applications	that	need	to	operate	at	higher	scale
• Identify	requirements	that	derive	companies	to	migrate	to	
microservices (contrast	of	requirements	between	companies)
• Understand	strategies	for	reliability of microservice architecture	
either	at	micro-level	using	design	patterns	or	at	a	larger	level
• Build	agile	team	structure	that	enable	large-scale	companies	to	move	
fast	(organizational	challenges)
• Understand	challenges	that	Netflix-Uber-Spotify	faced	in	realizing	
microservice based	applications
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Disclaimer

• I	used	materials	from	
• Netflix	blog
• Spotify,	Uber	and	Netflix’s	architects	GOTO	talks
• And	some	other	sources	referenced	in	the	slides

• I’m	a	postdoc	in	Christian’s	group
• Software	Engineering	+	Machine	Learning

• I	worked	as	a	software	practitioners	for	7	years
• Pre-PhD
• 4	years	as	a	developer
• 3	years	as	an	architect
• Involved	in	migration	to	cloud	and	microservices
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Microservices 
Architecture 
Enables DevOps
Migration to a Cloud-Native 
Architecture

Armin Balalaie and Abbas Heydarnoori, Sharif University of 
Technology

Pooyan Jamshidi, Imperial College London

// This article reports on experiences and lessons learned 
during incremental migration and architectural refactoring of 
a commercial mobile back end as a service to microservices 
architecture. It explains how the researchers adopted 
DevOps and how this facilitated a smooth migration. //

A LOOK AT the searches related to 
the term “microservices” on Google 
Trends revealed that the top searches 
are now technology driven. This im-
plies that the time of general search 
terms such as “What is microser-
vices?” has now long passed. Not 
only are software vendors (for ex-
ample, IBM and Microsoft) using 
microservices and DevOps practices, 

but also content providers (for exam-
ple, Netflix and the BBC) have ad-
opted and are using them.

In addition, Google Trends re-
veals that both DevOps and mi-
croservices are growing concepts, 
with an equal rate of growth after 
2014 (see Figure 1). Although Dev-
Ops can also be applied to mono-
lithic software systems, microservices 

enable effective implementation of 
DevOps by promoting the impor-
tance of small teams.1 (For more on 
DevOps and Microservices, see the 
related sidebar.)

A microservices architecture is a 
cloud-native architecture that aims 
to realize software systems as a 
package of small services. Each ser-
vice is independently deployable on 
a potentially different platform and 
technological stack. It can run in 
its own process while communicat-
ing through lightweight mechanisms 
such as RESTful or RPC-based 
APIs—for example, Finagle. (REST 
stands for Representational State 
Transfer.) In this setting, each ser-
vice is a business capability that can 
utilize various programming lan-
guages and data stores and is devel-
oped by a small team.2

Migrating monolithic architec-
tures to microservices brings in 
many benefits. In particular, it pro-
vides adaptability to technological 
changes to avoid technology lock-in 
and, more important, reduced time-
to-market and better development 
team structuring around services.3

Here we explain our experiences 
and lessons learned during incre-
mental migration of Backtory (www.
backtory.com), a commercial mo-
bile back end as a service (MBaaS), 
to microservices in the context of 
 DevOps. Microservices help Back-
tory in various ways, especially in 
shipping new features more fre-
quently and providing scalability for 
the collective set of users from differ-
ent mobile-app developers.

Furthermore, we report on migra-
tion patterns we developed on the 
basis of our observations in migra-
tion projects. Practitioners can use 
these patterns to migrate monolithic 
software systems to microservices. In 
addition, system consultants can use 

FOCUS: DEVOPS

What	is	the	most	interesting	aspect	that	
you	have	learned	from	the	Netflix	talk?

Tradeoff	in	software	architecture

• Everything	is	tradeoff
• Try	to	make	them	intentionally

Organ	Systems
Each	organ	has	a	purpose
Organs	form	systems
Systems	form	an	organism
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and	so	is	taking	traffic

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Largest	Internet	TV	network

86	million	members
~190	countries,	10s	of	languages
125m	hours	content	per	day

Microservices on	AWS

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Netflix	DVD	Data	Center	- 2000
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HTTP

JDBC

DB	Link
HTTP/S

Monolithic	code	base
Monolithic	database
Tightly	coupled	architecture

What	microservices are	not What	microservices are	not

Service Oriented Architecture 

Enterprise Service Bus (ESB)

Privacy
Service (PS)
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Other
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• Message Routing 
• Message Monitoring 

 

 
• Service Replication 
• Language transformation 

Edge

ELB

Zuul

NCCP

API

Middle	Tier	&	Platform

Product
• Bucket	testing
• Subscriber
• Recommendations

Platform
• Routing
• Configuration
• Crypto

Persistence
• Cache
• Database

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Architectural	pattern	1:	API	Gateway	
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Source:	Kasun Indrasiri,	Microservices in	Practice:	From	Architecture	to	Deployment
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Architectural	pattern	2:	Inter-process	
Communication	in	a	Microservices Architecture	
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Architectural	pattern	3:	Service	Discovery	in	a	
Microservices Architecture	
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Architectural	pattern	4:	Event-Driven	Data	
Management	for	Microservices
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27Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication 

A message consists of headers (metadata such as the sender) and a message body. 
Messages are exchanged over channels. Any number of producers can send messages 
to a channel. Similarly, any number of consumers can receive messages from a channel. 
There are two kinds of channels, point-to-point and publish-subscribe: 

•  A point-to-point channel delivers a message to exactly one of the consumers that are 
reading from the channel. Services use point-to-point channels for the one-to-one 
interaction styles described earlier  

•  A publish-subscribe channel delivers each message to all of the attached consumers. 
Services use publish-subscribe channels for the one-to-many interaction styles 
described above 

Figure 3-4 shows how the taxi-hailing application might use publish-subscribe channels 

Figure 3-4. Using publish-subscribe channels in a taxi-hailing application. 

The Trip Management service notifies interested services, such as the Dispatcher, about a 
new Trip by writing a Trip Created message to a publish-subscribe channel  The Dispatcher 
finds an available driver and notifies other services by writing a Driver Proposed message 
to a publish-subscribe channel 

DISPATCHER

TRIP CREATED

DRIVER PROPOSED

TRIP
MANAGEMENT

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

1(: 75,36 ǫ 38%/,6+Ǭ68%6&5,%( &+$11(/

',63$7&+,1* ǫ 38%/,6+Ǭ68%6&5,%( &+$11(/

Chris	Richadson,	Microservices from	Design	to	Deployment

Architectural	pattern	5:	Decentralized	Data	
Management

Christian	Posta,	The	Hardest	Part	About	Microservices:	Your	Data

Architectural	pattern	6:	Choosing	a	
Microservices Deployment	Strategy	
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Architectural	pattern	7:	Security

18
Source:	Kasun Indrasiri,	Microservices in	Practice:	From	Architecture	to	Deployment
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What	architectural	patterns	you	can	
identify	within	these	architectures?

Edge

ELB

Zuul

NCCP

API

Middle	Tier	&	Platform

Product
• Bucket	testing
• Subscriber
• Recommendations

Platform
• Routing
• Configuration
• Crypto

Persistence
• Cache
• Database

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Microservices at	Uber

21

Microservices
at	Spotify

22

Why	reliability	matters	in	
microservices world?

Linux	Host
Linux	Host

Linux	Host
Linux	Host

Intra-service	Requests

Linux	Host
Apache Tomcat

Linux	Host
Apache Tomcat

Network	latency,	congestion,	failure
Logical	or	scaling	failure

Service	A Service	B

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices



10/16/17

5

Crossing	the	Chasm

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Cascading	Failure

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Vaccination

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FITSynthetic	transactions
Override	by	device	or	account
%	of	live	traffic	up	to	100%

Fault	Injection	Testing	(FIT)

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FIT

Fault	Injection	Testing	(FIT)

Enforced	throughout	the	call	path

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices
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API
API	

Gateway

App	1

App	2
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App	7

App	8
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99.99

99.99

99.99
Proxy

99.99 99.99

Combinatorial	Math

99.9910 =	99.9

Critical	Microservices

Persistence

In	the	presence	of	a	network	partition,	you	must	choose	
between	consistency	and	availability

CAP	Theorem

DB

DB

DB

Network	B

Network	C

Network	D

Service

Network	A X Zone	A

Zone	B

Zone	C

Zone	B

Zone	C

Clien
t

Zone	A

Local	Quorum
(Typical)

100ms

Eventual	Consistency
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Infrastructure

December	24th,	2012

US-East-1

Canada

No	place	to	go

US

Latin	America

US-East-1US-West-2 EU-West-1

Regional	failover

x x 

Regional fail-over 

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned

Regional	failover
Regional fail-over 

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned
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What	is	a	stateless	service?

What	is	a	stateless	service?

• Not	a	cache	or	a	database
• Frequently	accessed	metadata
• No	instance	affinity
• Loss	a	node	is	a	non-event

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Minimum	size

Desired	capacity

Maximum	size

Scale	out	as	needed

S3AMI	retrieved	on	demand

Compute	efficiency
Node	failure
Traffic	spikes
Performance	bugs

Auto	Scaling	Groups

Cluster	A Cluster	D

Edge	Cluster

Cluster	B

Cluster	C

Surviving Instance Failure

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

What	is	a	stateful service?
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What	is	a	stateless	service?

• Databases	and	caches
• Custom	apps	which	hold	data
• Loss	of	a	node	is	a	notable	event

Dedicated	Shards	– An	Antipattern

Squid	1 Squid	2 Squid	3

Client	Application

Subscriber	Client	Library

Cache	Client Service	Client

S S S S.	.	.

DB DB DB DB.	.	.

Squid	n

HA	Proxy

Set	1 Set	2 Set	3 Set	n

X

Redundancy	is	fundamental

Zone	A Zone	B Zone	C

.	.	..	.	..	.	.

EVCache Writes

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

.	.	.

Zone	A Zone	B Zone	C

Client	Application

Client	Library

EVCache	Client

.	.	..	.	..	.	.

EVCache Reads

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

.	.	.

Why	automation,	in	all	software	
dev/ops	stages,	is	important?
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Autonomic	Nervous
System

You	don’t	have	to	think	about	
digestion	or	breathing

Priorities
Our Priorities 

1. Innovation 

3. Efficiency 

2. Reliability 

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned

Innovation:	Tight	coupling	doesn’t	work	 Monolithic	vs	microservice-based	applications:	
Interdependent	vs	Independent	teams

59
Lee	Atchison,	Architecting	for	Scale:	High	Availability	for	Your	Growing	Applications

End-to-end	ownership

60

End-end ownership + velocity 
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Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned Kevin	Goldsmith,	Microservices @	Spotify
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Server

Core Library

Platform Platform Platform Platform

Infrastructure

Kevin	Goldsmith,	Microservices @	Spotify

Challenges
Synchronization

Client UX implementation
Core Library Implementation

 depends on
 depends on
 depends onServer Implementation

Infrastructure Implementation

Kevin	Goldsmith,	Microservices @	Spotify

Kevin	Goldsmith,	Microservices @	Spotify

Full-stack autonomous 
teams
Requires you to structure your 
application in loosely coupled parts

Architecture	evolution	of	Spotify

67Kevin	Goldsmith,	Microservices @	Spotify
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Architecture	evolution	of	Spotify

68 69
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Microservices:	Yay!

• Easier	to	Scale
• Easier	to	test
• Easier	to	deploy
• Easier	to	monitor	
• They	can	versioned	independently
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Microservices:	Boo!

• Monitoring	lots	of	services
• Documentations	
• Increased	latency	

75

What does this look like at Spotify?

‣ 810 active services

‣ ~10 Systems per squad

‣ ~1.7 Systems per person with access to 
production servers

‣ ~1.15 Systems per member of 
Technology

Microservices
at	Spotify
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As of April 2016: 

Uber Cities Worldwide: 400+ 
Countries: 70 
Employees: 6,000+

Uber

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Microservices at	Uber

79Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services
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pre-history PHP (outsourced)

Dispatch Node.JS, moving Go

Core Services Python, moving to Go

Maps Python and Java

Data Python and Java

Metrics Go

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

LANGUAGES
Hard to share code 
Hard to move between teams 
WIWIK: Fragments the culture

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Summary

• Microservices may	be	a	right	solution	for	building	complex	
applications	that	need	to	operate	at	higher	scale
• Tradeoffs	that	companies	made	to	migrate	to	microservices (contrast	
of	requirements	between	companies)
• Making	reliable	microservice architecture	requires	strategies	to	deal	
with	failure	either	at	micro-level	or	at	a	larger	level
• Microservices architecture	help	to	build	agile	team	structure	that	
enable	large	scale	companies	to	move	fast	(organizational	challenges)


