
10/16/17

1

Architecting for Scale
Microservices at Netflix-Uber-Spotify Scale

Pooyan	Jamshidi

Foundations	of	
Software	Engineering Learning	Goals

• Understand	the	value	of	microservices for	building	complex	
applications	that	need	to	operate	at	higher	scale
• Identify	requirements	that	derive	companies	to	migrate	to	
microservices (contrast	of	requirements	between	companies)
• Understand	strategies	for	reliability of microservice architecture	
either	at	micro-level	using	design	patterns	or	at	a	larger	level
• Build	agile	team	structure	that	enable	large-scale	companies	to	move	
fast	(organizational	challenges)
• Understand	challenges	that	Netflix-Uber-Spotify	faced	in	realizing	
microservice based	applications

2

Disclaimer

• I	used	materials	from	
• Netflix	blog
• Spotify,	Uber	and	Netflix’s	architects	GOTO	talks
• And	some	other	sources	referenced	in	the	slides

• I’m	a	postdoc	in	Christian’s	group
• Software	Engineering	+	Machine	Learning

• I	worked	as	a	software	practitioners	for	7	years
• Pre-PhD
• 4	years	as	a	developer
• 3	years	as	an	architect
• Involved	in	migration	to	cloud	and	microservices

2 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E

Microservices
Architecture
Enables DevOps
Migration to a Cloud-Native
Architecture

Armin Balalaie and Abbas Heydarnoori, Sharif University of
Technology

Pooyan Jamshidi, Imperial College London

// This article reports on experiences and lessons learned
during incremental migration and architectural refactoring of
a commercial mobile back end as a service to microservices
architecture. It explains how the researchers adopted
DevOps and how this facilitated a smooth migration. //

A LOOK AT the searches related to
the term “microservices” on Google
Trends revealed that the top searches
are now technology driven. This im-
plies that the time of general search
terms such as “What is microser-
vices?” has now long passed. Not
only are software vendors (for ex-
ample, IBM and Microsoft) using
microservices and DevOps practices,

but also content providers (for exam-
ple, Netflix and the BBC) have ad-
opted and are using them.

In addition, Google Trends re-
veals that both DevOps and mi-
croservices are growing concepts,
with an equal rate of growth after
2014 (see Figure 1). Although Dev-
Ops can also be applied to mono-
lithic software systems, microservices

enable effective implementation of
DevOps by promoting the impor-
tance of small teams.1 (For more on
DevOps and Microservices, see the
related sidebar.)

A microservices architecture is a
cloud-native architecture that aims
to realize software systems as a
package of small services. Each ser-
vice is independently deployable on
a potentially different platform and
technological stack. It can run in
its own process while communicat-
ing through lightweight mechanisms
such as RESTful or RPC-based
APIs—for example, Finagle. (REST
stands for Representational State
Transfer.) In this setting, each ser-
vice is a business capability that can
utilize various programming lan-
guages and data stores and is devel-
oped by a small team.2

Migrating monolithic architec-
tures to microservices brings in
many benefits. In particular, it pro-
vides adaptability to technological
changes to avoid technology lock-in
and, more important, reduced time-
to-market and better development
team structuring around services.3

Here we explain our experiences
and lessons learned during incre-
mental migration of Backtory (www.
backtory.com), a commercial mo-
bile back end as a service (MBaaS),
to microservices in the context of
 DevOps. Microservices help Back-
tory in various ways, especially in
shipping new features more fre-
quently and providing scalability for
the collective set of users from differ-
ent mobile-app developers.

Furthermore, we report on migra-
tion patterns we developed on the
basis of our observations in migra-
tion projects. Practitioners can use
these patterns to migrate monolithic
software systems to microservices. In
addition, system consultants can use

FOCUS: DEVOPS

What	is	the	most	interesting	aspect	that	
you	have	learned	from	the	Netflix	talk?

Tradeoff	in	software	architecture

• Everything	is	tradeoff
• Try	to	make	them	intentionally

Organ	Systems
Each	organ	has	a	purpose
Organs	form	systems
Systems	form	an	organism

10/16/17

2

ELB

and	so	is	taking	traffic

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Largest	Internet	TV	network

86	million	members
~190	countries,	10s	of	languages
125m	hours	content	per	day

Microservices on	AWS

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Netflix	DVD	Data	Center	- 2000

Linux	Host
Apache Tomcat

Javaweb
STORE

Lo
ad

	B
al
an

ce
r

BILLING

HTTP

JDBC

DB	Link
HTTP/S

Monolithic	code	base
Monolithic	database
Tightly	coupled	architecture

What	microservices are	not What	microservices are	not

Service Oriented Architecture

Enterprise Service Bus (ESB)

Privacy
Service (PS)

Service
Consumer

Service
Consumer

Service
Consumer

Service
Provider

Service
Provider

Service
Provider

Other
Services

Routing

Service Registry Transport

Replication

• Message Routing
• Message Monitoring

• Service Replication
• Language transformation

Edge

ELB

Zuul

NCCP

API

Middle	Tier	&	Platform

Product
• Bucket	testing
• Subscriber
• Recommendations

Platform
• Routing
• Configuration
• Crypto

Persistence
• Cache
• Database

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Architectural	pattern	1:	API	Gateway	

12
Source:	Kasun Indrasiri,	Microservices in	Practice:	From	Architecture	to	Deployment

10/16/17

3

Architectural	pattern	2:	Inter-process	
Communication	in	a	Microservices Architecture	

13

Architectural	pattern	3:	Service	Discovery	in	a	
Microservices Architecture	

14

Architectural	pattern	4:	Event-Driven	Data	
Management	for	Microservices

15

27Microservices – From Design to Deployment Ch. 3 – Inter-Process Communication

A message consists of headers (metadata such as the sender) and a message body.
Messages are exchanged over channels. Any number of producers can send messages
to a channel. Similarly, any number of consumers can receive messages from a channel.
There are two kinds of channels, point-to-point and publish-subscribe:

• A point-to-point channel delivers a message to exactly one of the consumers that are
reading from the channel. Services use point-to-point channels for the one-to-one
interaction styles described earlier

• A publish-subscribe channel delivers each message to all of the attached consumers.
Services use publish-subscribe channels for the one-to-many interaction styles
described above

Figure 3-4 shows how the taxi-hailing application might use publish-subscribe channels

Figure 3-4. Using publish-subscribe channels in a taxi-hailing application.

The Trip Management service notifies interested services, such as the Dispatcher, about a
new Trip by writing a Trip Created message to a publish-subscribe channel The Dispatcher
finds an available driver and notifies other services by writing a Driver Proposed message
to a publish-subscribe channel

DISPATCHER

TRIP CREATED

DRIVER PROPOSED

TRIP
MANAGEMENT

PASSENGER
MANAGEMENT

DRIVER
MANAGEMENT

1(: 75,36 ǫ 38%/,6+Ǭ68%6&5,%(&+$11(/

',63$7&+,1* ǫ 38%/,6+Ǭ68%6&5,%(&+$11(/

Chris	Richadson,	Microservices from	Design	to	Deployment

Architectural	pattern	5:	Decentralized	Data	
Management

Christian	Posta,	The	Hardest	Part	About	Microservices:	Your	Data

Architectural	pattern	6:	Choosing	a	
Microservices Deployment	Strategy	

17

Architectural	pattern	7:	Security

18
Source:	Kasun Indrasiri,	Microservices in	Practice:	From	Architecture	to	Deployment

10/16/17

4

What	architectural	patterns	you	can	
identify	within	these	architectures?

Edge

ELB

Zuul

NCCP

API

Middle	Tier	&	Platform

Product
• Bucket	testing
• Subscriber
• Recommendations

Platform
• Routing
• Configuration
• Crypto

Persistence
• Cache
• Database

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Microservices at	Uber

21

Microservices
at	Spotify

22

Why	reliability	matters	in	
microservices world?

Linux	Host
Linux	Host

Linux	Host
Linux	Host

Intra-service	Requests

Linux	Host
Apache Tomcat

Linux	Host
Apache Tomcat

Network	latency,	congestion,	failure
Logical	or	scaling	failure

Service	A Service	B

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

10/16/17

5

Crossing	the	Chasm

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Cascading	Failure

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Vaccination

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FITSynthetic	transactions
Override	by	device	or	account
%	of	live	traffic	up	to	100%

Fault	Injection	Testing	(FIT)

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Device Service	B	

Service	C

Internet EdgeZuul

Service	A	

ELB

FIT

Fault	Injection	Testing	(FIT)

Enforced	throughout	the	call	path

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

10/16/17

6

ELB

API
API	

Gateway

App	1

App	2

App	4

App	5

App	6

App	3

App	7

App	8

99.99

99.99

99.99

99.99

99.99

99.99

99.99

99.99
Proxy

99.99 99.99

Combinatorial	Math

99.9910 =	99.9

Critical	Microservices

Persistence

In	the	presence	of	a	network	partition,	you	must	choose	
between	consistency	and	availability

CAP	Theorem

DB

DB

DB

Network	B

Network	C

Network	D

Service

Network	A X Zone	A

Zone	B

Zone	C

Zone	B

Zone	C

Clien
t

Zone	A

Local	Quorum
(Typical)

100ms

Eventual	Consistency

10/16/17

7

Infrastructure

December	24th,	2012

US-East-1

Canada

No	place	to	go

US

Latin	America

US-East-1US-West-2 EU-West-1

Regional	failover

x x

Regional fail-over

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned

Regional	failover
Regional fail-over

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned

10/16/17

8

What	is	a	stateless	service?

What	is	a	stateless	service?

• Not	a	cache	or	a	database
• Frequently	accessed	metadata
• No	instance	affinity
• Loss	a	node	is	a	non-event

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

Minimum	size

Desired	capacity

Maximum	size

Scale	out	as	needed

S3AMI	retrieved	on	demand

Compute	efficiency
Node	failure
Traffic	spikes
Performance	bugs

Auto	Scaling	Groups

Cluster	A Cluster	D

Edge	Cluster

Cluster	B

Cluster	C

Surviving Instance Failure

Source:	Josh	Evans,	Mastering	Chaos	- A	Netflix	Guide	to	Microservices

What	is	a	stateful service?

10/16/17

9

What	is	a	stateless	service?

• Databases	and	caches
• Custom	apps	which	hold	data
• Loss	of	a	node	is	a	notable	event

Dedicated	Shards	– An	Antipattern

Squid	1 Squid	2 Squid	3

Client	Application

Subscriber	Client	Library

Cache	Client Service	Client

S S S S.	.	.

DB DB DB DB.	.	.

Squid	n

HA	Proxy

Set	1 Set	2 Set	3 Set	n

X

Redundancy	is	fundamental

Zone	A Zone	B Zone	C

.

EVCache Writes

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

.	.	.

Zone	A Zone	B Zone	C

Client	Application

Client	Library

EVCache	Client

.

EVCache Reads

Client	Application

Client	Library

EVCache	Client

Client	Application

Client	Library

EVCache	Client

.	.	.

Why	automation,	in	all	software	
dev/ops	stages,	is	important?

10/16/17

10

Autonomic	Nervous
System

You	don’t	have	to	think	about	
digestion	or	breathing

Priorities
Our Priorities

1. Innovation

3. Efficiency

2. Reliability

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned

Innovation:	Tight	coupling	doesn’t	work	 Monolithic	vs	microservice-based	applications:	
Interdependent	vs	Independent	teams

59
Lee	Atchison,	Architecting	for	Scale:	High	Availability	for	Your	Growing	Applications

End-to-end	ownership

60

End-end ownership + velocity
Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Architect

Design

Develop

Review Test

Deploy

Run

Support

Ruslan Meshenberg,	Microservices at	Netflix	Scale:	Principles,	Tradeoffs	&	Lessons	Learned Kevin	Goldsmith,	Microservices @	Spotify

10/16/17

11

Server

Core Library

Platform Platform Platform Platform

Infrastructure

Kevin	Goldsmith,	Microservices @	Spotify

Challenges
Synchronization

Client UX implementation
Core Library Implementation

 depends on
 depends on
 depends onServer Implementation

Infrastructure Implementation

Kevin	Goldsmith,	Microservices @	Spotify

Kevin	Goldsmith,	Microservices @	Spotify

Full-stack autonomous
teams
Requires you to structure your
application in loosely coupled parts

Architecture	evolution	of	Spotify

67Kevin	Goldsmith,	Microservices @	Spotify

10/16/17

12

Architecture	evolution	of	Spotify

68 69

70 71

Lo
ad

 B
al

la
nc

er

72

Microservices:	Yay!

• Easier	to	Scale
• Easier	to	test
• Easier	to	deploy
• Easier	to	monitor	
• They	can	versioned	independently

10/16/17

13

Microservices:	Boo!

• Monitoring	lots	of	services
• Documentations	
• Increased	latency	

75

What does this look like at Spotify?

‣ 810 active services

‣ ~10 Systems per squad

‣ ~1.7 Systems per person with access to
production servers

‣ ~1.15 Systems per member of
Technology

Microservices
at	Spotify

76

As of April 2016:

Uber Cities Worldwide: 400+
Countries: 70
Employees: 6,000+

Uber

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Microservices at	Uber

79Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

10/16/17

14

pre-history PHP (outsourced)

Dispatch Node.JS, moving Go

Core Services Python, moving to Go

Maps Python and Java

Data Python and Java

Metrics Go

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

LANGUAGES
Hard to share code
Hard to move between teams
WIWIK: Fragments the culture

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services Matt	Ranney,	What	I	Wish	I	Had	Known	Before	Scaling	Uber	to	1000	Services

Summary

• Microservices may	be	a	right	solution	for	building	complex	
applications	that	need	to	operate	at	higher	scale
• Tradeoffs	that	companies	made	to	migrate	to	microservices (contrast	
of	requirements	between	companies)
• Making	reliable	microservice architecture	requires	strategies	to	deal	
with	failure	either	at	micro-level	or	at	a	larger	level
• Microservices architecture	help	to	build	agile	team	structure	that	
enable	large	scale	companies	to	move	fast	(organizational	challenges)

