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ABSTRACT
The track 2 problem in KDD Cup 2011 (music recommen-

dation) is to discriminate between music tracks highly rated
by a given user from those which are overall highly rated, but
not rated by the given user. The training dataset consists of
not only user rating history but also the taxonomic informa-
tion of track, artist, album, and genre. This paper describes
the solution of the National Taiwan University team which
ranked first place in the competition. We exploited a diverse
of models (neighborhood models, latent models, BPR-based
models, and random-walk models) with local blending and
global ensemble to achieve 97.45% in accuracy on the testing
dataset.

1 Introduction
The current work is based on a competition for recommen-

dation, an area of research popularized by the recent Netflix
competition[7, 16, 13]. A departure from the standard mode
of item rating prediction, the task of KDD-Cup 2011 Track
2 requires discrimination of tracks rated highly by a given
user from tracks which are highly rated in general. In other
words, in the context of tracks which are highly rated, what
distinguishes the given user from his or her peers? This pa-
per describes the solution proposed by the National Taiwan
University team through a course ”Machine Learning and
Data Mining: Theory and Practice” that consists of three
instructors, three TAs, and 19 students.

The Yahoo! Labs KDD-Cup 2011 Track 2 Dataset[3] finds
its origin in Yahoo! Music, where users may rate tracks, al-
bums, artists, and genres. Information about this taxonomy
is provided for over 90% of rated tracks.

Spanning 249, 012 users and 296, 111 items, the provided
training and testing datasets consist of 61, 944, 406 and
607, 032 records, respectively. For each user in the test set,
six songs are given: three tracks rated highly by the user
(positives) and three not rated by the given user, but rated
highly by other users (negatives). The task is to classify
these six tracks in binary fashion to minimize the percentage
error.

This paper is organized as follows: Section 2 describes our
general framework, Section 3∼6 describes different types of
models we exploit, Section 7 and 8 describing our blending

and ensemble methods, and we provide our take home points
in Section 9. We provide the notation description and other
supplemental materials in the appendix.

2 Framework and Global Settings/Strategies
2.1 The Architecture of Our System

Our solution can be divided into three core stages: models,
blends, and ensembling, as shown in Figure 1.

In the first stage, several models are designed and applied
independently for this problem. In the blending stages, some
blending models that consist of a linear or non-linear combi-
nations of the results from a small portion of single models
are generated. We then utilize the individual model results
along with the blend results in the ensemble process, which
is made up of two stages. Such general framework is simi-
lar to what the Netflix winner has used and our solution to
track 1 in KDD Cup 2011.

Figure 1: Discrimination Framework

The strategies and methods described in this section are
used by multiple models in our framework. In Appendix B,
we create a table showing which techniques were used by
which individual models.



2.2 Sampling
The goal is to divide the six items into two groups: one

group which contains tracks highly rated by the user and
one which contains highly rated tracks (i.e. rated ≥ 80 by
many other users) not yet rated by the given user. Since in
the provided dataset negative examples are less transparent
(i.e. only given ratings are given), a reasonable first-step is
to sample negative items for each user as training data for
our models.

We therefore follow the method that was used to produce
the testing dataset to sample a set of negative examples.
The probability that a track is sampled as negative for a
particular user is proportional to the number of high ratings
(≥ 80) it received in the training data. In a portion of our
models, a variation named taxonomic sampling is used to
reject a negative sample if its corresponding album or artist
has been rated by the given user, as in this case the track is
more likely to have been rated previously by the user. The
number of negative examples per user is set to the number
of items the user has rated. We re-sample negative data in
every iteration during optimization for most of the models.
For some models that require exact item rating values rui
of negative examples, they are designed as a parameter for
optimization, and generally we found values between −1 and
−100 to be suitable.

2.3 Validation Set
A validation set is usually needed for parameter adjusting

to avoid overfitting. For efficiency purpose, we did not do
cross-validation but simply choose an individual validation
set to serve such purpose. Unlike Track 1, a validation set
was not provided for Track 2 by the Cup organizers. An
internal validation set was thus created from the training
data utilizing the same method as that for creating the test
dataset as described within the KDD-Cup website1. The
items in the validation dataset are exclusively tracks. Three
were randomly selected from the user’s highly rated items
(positives), and three were sampled with probability propor-
tional to the number of times it receives high ratings (nega-
tives). This internal validation dataset is used for evaluating
individual models results and for optimizing blending and
ensemble methods. We find that the trend of performance
of our models for the validation data is highly consistent
with that of the leaderboard which gives us high confidence
to use such a validation set to evaluate the quality of our
models internally.

2.4 Residual-Based Models
A residual-based model generally works along with a ba-

sic prediction model. The basic model is first trained for
prediction, and then its residuals are used as the inputs to
train a residual-based model. During prediction, a similar
procedure is applied and the outputs from both models are
summed up as the final output.

2.5 Adaptive Learning Rate
An adaptive learning rate was employed in a number of the

methods outlined in our framework. The idea behind this
method is to test whether the decrease in validation error
rate between iterations has dropped below a given thresh-
old. If it has, we decrease the learning rate. This strategy
worked 0.1∼0.6% better than fixed learning rate in most of
the models.

1http://kddcup.yahoo.com

2.6 Quasi-Album/Artist Data
We propose a method to model the taxonomic structure

through enriching our training dataset by adding some ad-
ditional sample data includes:
• Quasi-Album data : each track with album informa-

tion in both training and testing datasets is replaced
by its album
• Quasi-Artist data: each track or album with artist in-

formation specified in both training and testing datasets
is replaced by its artist

In effect, if a user rates more than one track per album,
then there will be more than one album rating by the user.
The experiments show that adding such data provide 0.9∼1.8%
improvement for certain models, which is considered as very
significant in this competition.

2.7 Pseudo-Taxonomy
Roughly 9% of the tracks in the official training dataset

lack album information. For each of them, we first repre-
sent it using a vector of binary elements where each element
represent whether a specific user rated it, then we apply k-
means clustering algorithm on these vectors to group those
tracks and finally assign a pseudo-album to each group. Sim-
ilarly, we assigned pseudo-artists to the tracks without artist
information. Furthermore, we preform similar clustering on
every item (including those with official taxonomic informa-
tion), providing an additional track feature. Several of our
models reach 0.4∼0.9% improvement in accuracy using this
information.

3 Neighborhood Models
3.1 Taxonomy-Aware Model

It is natural to assume that a user may rate a track high
given having rated the associated album high. Based on this
conjecture, we consider each album as a group that contains
the tracks which belong to it. Similarly, each artist and
genre can also be treated as a group. A taxonomy-aware
neighborhood model is described as below:

Let G be the set of all groups, and Gi be the set of groups
containing item i. Then, the score of user u for item i is
defined as

sui =
1

|Gi|
∑

j∈R(u)

(ruj + 1) ·

 ∑
G∈Gi∩Gj

1

|G|

 (1)

The term
∑

G∈Gi∩Gj

1
|G| represents the similarity between

item i and j, which is the sum of weights of the common
groups containing items i and j. The weight of each group
is set to the inverse of its size as we believe that two items
which coexist in a smaller group are likely to be more similar.
The score is normalized by the number of groups the item i
belongs to 1

|Gi|
.

The items with top-3 sui scores are labeled 1, while the
others are labeled 0. The validation error of this model is
7.5123% and the Test1 error is 7.2959%.

3.1.1 Regularization Terms
We find that the scores of items with little or no group

information are under-estimated in our model, so two regu-
larization terms are added into Eq. 1 to mitigate this issue.

sui =
1

| Gi |
∑

j∈R(u)

(ruj + 1)

λ+
∑

G∈Gi∩Gj

1

| G | +λg

 (2)



Table 1: Regularization Augmentation of
Neighborhood Models Results

Correlations λg λ %Test1

P 0 0 5.8515
BPR100, CUS 0 0 5.5003
BPR1000, CUS, P 0 0 5.1676
BPR1000, CUS, P, C 0 0.001 3.9978
BPR1000, CUS, P, C, K 100 0.005 3.8862
BPR2000, CUS, P, C, K 100 0.005 3.8797

CUS = common-user-support, P=Pearson, C=Cosine,
K=Kulczynski, BPRn represents the correlation
trained by BPR-kNN with n features.

where λg is used to counter the impact of small group-size
and λ is used to compensate for neighbor items which have
no common group with i.

3.1.2 Augmenting by Correlation Measures
We refine the previous formulation by considering the cor-

relation between two items.

sui =
1

|Gi|
∑

j∈R(u)

(ruj+1)·

λ+
∑

G∈Gi∩Gj

1

|G|+ λg

·Corr(i, j)
(3)

The correlation between two items is based on their rat-
ings by users. For each item, we first create a vector vi

whose length is equivalent to the number of users. An el-
ement in vi is 0 if the corresponding user has not rated it
and ln(Ni/|R(u)|) otherwise. We consider several correla-
tion measures among vi and vj as Corr(i, j):

• Cosine:
vT
i vj

‖vi‖2·‖vj‖2

• Common user support:
vT
i vj

‖vi‖1·‖vj‖1

• Kulczynski’s coefficient: 1
2

(
vT
i vj

‖vi‖22
+

vT
i vj

‖vj‖22

)
• Pearson’s correlation coefficient:

Nu·vT
i vj−‖vi‖1‖vj‖1√

(Nu‖vi‖22−‖vi‖
2
1)·(Nu‖vj‖22−‖vj‖

2
1)

Besides these common correlation measures, the Bayesian
Personalized Ranking (BPR) correlation generated by the
BPR-kNN model (see Section 5.2) may also be used as Corr(i, j)
in the neighborhood model. Also, multiple correlation mea-
sures can be applied concurrently. Here we consider only
non-linear combinations as

Corr(i, j) =
∏
k

Corrk(i, j) (4)

Table 1 shows the results of different variations. It should
be noted that with the large number of items, the calcula-
tion of item-item similarities/correlation measures presents
a challenge. While the number of items is large, the number
of items within the validation/test datasets is quite limited.
In addition, only the items in R(u) are paired with i for
validation and testing (u, i) tuples. The computation can
be done efficiently via the use of sparse data representation
and parallelization. We pre-calculate correlation measures
for the nearly 250M effective pairs and store to disk, requir-
ing roughly 3G of memory and disk space.

3.2 User-based k-Nearest Neighbors
As the previous neighborhood model considers only item-

based neighbors, we also implement user-based neighbor-
hood approaches. The main idea is to predict how a user
rates an item by checking how similar users rated the item.

Adopting the k-Nearest Neighbor (kNN) approach, the score
of a user u to an item i is defined as

sui =

(
1

ln(|R(i)|+ 10)

)m ∑
top-k sim.

v∈R(i)

sim(v, u) (5)

where m is a parameter set to 2 and k is a parameter set to
20 in our experiment.

Unlike items, there is no taxonomy for users. For this, we
define an asymmetric similarity measure between users:

sim(v, u) =
1

|R(v)|
∑

i∈R(u)∩R(v)

1

|R(i)| (6)

The validation error of this model is 8.7112%. Note that
this kNN approach is also applied on the item side. Although
it produces inferior results as compared to the user-based
model, it is still useful in the final ensemble.

3.3 Predicting on Neighbors
The kNN approach can also be used to improve the results

of other models, such as pLSA. For example, to predict the
rating of a user-item pair, we first use pLSA to predict the
ratings of the top-k neighbors of this item by pLSA, and
then weigh the neighbor scores by their cosine similarity to
this item. Finally, the weighted scores of the top-k neigh-
bors are summed as the prediction for this user-item rating.
This method improves the validation error of pLSA with
200 features from 8.8447% to 8.1462%, and from 4.8742%
to 4.6548% for BPR-MF with 200 features.

4 Models that Exploit Latent Information
Models based on collaborative filtering approaches often

exploit latent information or hidden structures of users and
items from the given ratings. We modify these models to
solve the Track 2 problem, which can be considered a one-
class collaborative filtering(OCCF) problem [12] as the user-
item pairs given in training data are all rated. The negative
examples are sampled as described in Section 2.2, and the
latent information is learned from the existing and sampled
data using MF, pLSA and pPCA models.

4.1 Matrix Factorization
MF methods have been widely used in CF to predict rat-

ings [7, 16, 13]. At the core, MF methods approximate a
rating rui by the inner product of an f -dimensional user
feature vector pu and an item feature vector qi. A standard
method to learn pu,qi is to minimize the sum of square
errors between the predicted and actual ratings in the train-
ing data and often L2 regularization is applied to prevent
overfitting.

However, directly applying MF to predict ratings for dis-
crimination yields poor performance for the Track 2 task.
This is a reasonable finding as the ratings in the training do
not provide sufficient information about negative instances.
To provide for negative samples, we exploit the negative
sampling technique introduced in Section 2. The MF tech-
nique is then applied to a more condensed matrix, now con-
taining negative ratings. This model is called OCCF-MF.
For prediction, the six tracks associated with each user are
ranked by the score sui = pT

uqi. The top three items are as-
signed label 1, while the remaining items are assigned label
0.

We propose several variations of OCCF-MF to further im-
prove its performance.



4.1.1 Optimization Methods
A typical optimization method for MF is Stochastic Gradi-

ent Descent (SGD) which we combine with Adaptive Learn-
ing Rate (ALR), as described in Section 2 to form our näıve
MF solver. In the SGD algorithm, we update one positive
and one negative instance in each turn. For acceleration,
we utilize Coordinate Descent (CD) for solving the OCCF-
MF optimization problem for its fast convergence properties.
By solving each pu and qi separately, the time complexity
of updating becomes linear. In practice, the initial value of
all pu and qi are set to

√
r̄/f , where r̄ is the average rating

in the training data [11]. Also, the rating values of the sam-
pled negative data should be set to a value which makes r̄
zero otherwise the CD approach tends to overfit easily.

4.1.2 Quantizing Ratings
The task of Track 2 can be regarded as a classification

task. If we focus solely on whether a user rates an item,
we may discard the actual rating values and set rui = 1
for rated instances, and rui = −1 for sampled negative in-
stances. Applying OCCF-MF on this kind of data leads to
our two-class variant.

Furthermore, the items with high and low ratings may be
separated into two groups as in Track 2 only highly rated
items are considered positive. Thus we quantize rui = 1
for high ratings and rui = 0 for low ratings. The sampled
negative data, we still set rui = −1. Again, OCCF-MF
procedure is applied to solve this three-class variant.

4.1.3 Ranking Objective
The task of Track 2 problem may alternatively be viewed

as a ranking problem, where the six items of a specific user
are ranked by their estimated ratings. To reflect this varia-
tion, we change the optimization objective in OCCF-MF.
• pairwise ranking variant:

min
P,Q

∑
u

∑
i,j

max(0,−(rui − ruj)(pT
uqi − pT

uqj))

• one-sided regression (OSR) [17] variant:

min
P,Q

∑
u

∑
i,j

(
max(0, rui − pT

uqi)
)2

+
(

max(0,pT
uqj − ruj)

)2
In both objectives, i stands for positive examples, while j
stands for the sampled negative example.

4.1.4 Optimization with Constraint
Following non-negative MF [9], we may perform OCCF-

NMF by adding the constraint that all entries of P and Q are
non-negative. The constraints are satisfied using projected
gradient method during optimization [?]. Note that the
negative ratings are shifted to non-negative before training.
SGD with adaptive learning rate is used to optimize OCCF-
NMF, using the same details as that of OCCF-MF. In fact,
the only difference between the OCCF-MF and OCCF-NMF
methods is the non-negative constraint.

Based on the idea of neighborhood models, another vari-
ant is formed by adding the constraint

pu =
1

|R(u)|
∑

i∈R(u)

rui + 1

101
qi

The prediction function pT
uqi can then be viewed as a item-

based neighborhood model with low rank approximation of
the correlation matrix. We call this variant Item Correlation
MF (ICMF).

4.2 Probabilistic Latent Semantic Analysis
Probabilistic Latent Semantic Analysis (pLSA) generally

models the hidden latent structure in the data [6]. It intro-
duces f unobserved variables Z with each occurrence of an
user-item pair in our context. The conditional probabilities
are learned using the Expectation-Maximization (EM) algo-
rithm. There are several ways to model the dependency, as
shown in the following figure.

U Z I U Z I U Z I

Regular
P (Z|U)P (I|Z)

Inverse
P (Z|I)P (U |Z)

Symmetric
P (Z)P (U |Z)P (I|Z)

We find the inverse model has superior performance and
therefore it is this version which is included in our final en-
semble. Note that the rating is not modeled here, instead we
use the rating information to control the updated weight in
the M-step of EM. That is, the distribution of higher-rated
items are updated in a faster manner than their lower-rated
counterparts. Moreover, the tempered EM (TEM) [6] algo-
rithm is applied as an alternative optimization method.

4.3 Probabilistic Principle Component Anal-
ysis

Probabilistic Principle Component Analysis (pPCA) uses
the EM algorithm to determine the principle axes of ob-
served data [15]. This method is equivalent to Probabilistic
Matrix Factorization (PMF) [8]. We included this approach
into our solution with the modification of sampled negative
data. At the beginning of pPCA, some unrated user-item
pairs are sampled as negative data. The principle axes are
learned from both the original training data and sampled
negative data. The parameter f decides the number of prin-
ciple axes to learn, or equivalently the number of features in
PMF.

4.4 Other Exploited Strategies
In addition to the basic models and variants, some ideas

are applied to further improve the performance.

• The parameters of models, including learning rate, reg-
ularization weight, and rating value of negative sam-
ples are fine tuned by an automatic parameter tuner[16].
• Besides the ordinal training set, the quasi-album/artist

data described in Section 2 is also used to generate
models for further blending.
• With the same training data, several models can be

generated with different random initial values. Com-
bining these models helps to improve the final result.

The models with their parameters and results are shown
in Table 2.

5 Bayesian Personalized Ranking
The goal of Bayesian Personalized Ranking (BPR)[14] is

to optimize the pair-wise ranking of items for each user.
We believe this idea is especially suitable for the Track 2
task as BPR allows the explicit distinction of favorite items
from unrated ones. Specifically, pairwise ranking of items is
optimized for each individual user. We choose three basic
learning models for BPR: Matrix Factorization, K-Nearest
Neighbors and Linear Combination of User/Item features to
generate ratings for comparison. We use Stochastic Gradient
Descent as the solver. In each step SGD updates a pair of
items. One item in the pair represents the positive item (i.e.
high rating), while the other represents the negative item.



Table 2: Results of latent information models

Model Method f %Valid

OCCF-MF SGD 3200 4.2514
OCCF-MF ALR 3200 4.1197
OCCF-MF CD 800 7.3571
OCCF-MF SGDa 800 6.5644
OCCF-MF w/ quasi-album SGDa 800 6.8052
OCCF-MF w/ quasi-artist SGDa 800 9.9814
OCCF-MF w/ taxonomy sample SGD 3200 4.3840
OCCF-NMF ALR 800 4.7230
OCCF-NMF ALR 3200 4.0400
OSR SGD 800 16.3692
2-class SGD 800 6.5279
3-class SGD 800 5.0735
pairwise ranking SGD 800 6.9874
ICMF ALR 200 7.8737
ICMF & pairwise ranking ALR 800 7.9485
pLSA EM 100 9.8374
pLSA EM 200 8.7818
pLSA EM 2000 7.2695
pLSA on album data EM 500 8.1712
pLSA on artist data EM 500 8.4780
pLSA TEM 2000 5.4643
pLSA TEM 2000 5.3997
pPCA EM 20 9.2460
a

The sampled negative data is fixed in these models. Also, it updates
all positive instances of one user before updating the negative
instances of that user.

5.1 BPR: Matrix Factorization
We use the BPR-MF[14] to optimize the pairwise ranking

of items that are rated using the MF method. Our approach
is slightly different from the original BPR-MF approach in
the following respects:

1. We use explicit ratings instead of implicit feedback in-
formation.

2. The learning rates are chosen based on the rating dif-
ference of a pair of items.

η(u, i, j) =
rui − ruj + α

100

where α is a small number between 0 and 10. Further-
more, we use the adaptive learning rates, specifically
halving the rate if the improvement of the validation
error is within 0.01% over 10 iterations.

3. We set the regularization terms to 0 or very small num-
bers such as 0.001.

4. We use non-negative MF because OCCF-NMF outper-
forms OCCF-MF.

5. We use the quasi-album/artist data in training.

5.2 BPR: kNN
We follow the standard training approach[14], but modify

the kNN prediction formula. We add a rating term and a
regularization term (rui + λ) to be multiplied with the item
similarity term c as shown in equation 7.

sui =
∑

j∈R(u),j 6=i

(rui + λ)cij (7)

We hereby take the rating information into account as
we believe the highly rated items and the lower rated ones
should convey different preferences in kNN. The term λ is
very important for Track 2 as it distinguishes the unrated

Table 3: BPR-MF Results

Variants #features α #iter %Valid %Test1

- 200 - 94 6.2364 6.0484
QAL 200 - 174 5.9002 -
QAL 200 - 192 5.8712 5.8885
QAR 200 - 190 8.4407 -
RES 50 10 356 5.9272 5.8852
WLR 50 10 242 6.3506 -
WLR 200 10 228 5.2679 5.2798
WLR 400 10 154 5.3177 -
ALR 400 5 610 4.6614 4.6817
ALR & NMF 400 5 354 4.8699 4.8448
ALR & NVT 400 5 434 4.5530 4.5867

QAL/QAR: quasi-album/artist data
RES: residual data of OCCF-MF with f = 400
WLR: weight learning rate by rating difference
ALR: adaptive learning rate, η = 0.01 initially
NMF: non-negative MF
NVT: reject sampled ratings in validation/testing data
Regularization: λu = λi = 10−3, λj = 10−4 for ALR, and
λu = λi = λj = 0 for others.

Table 4: BPR K-Nearest Neighbor Results

#ratingsa #features #iter η %Valid %Test1

100 200 142 0.008 8.4398 8.4307
100 2000 224 0.006 7.4853 -

a The maximum number of ratings per user used in
training. For users with more ratings, only a subset of
this size is sampled for training.

items from zero-rated items. The training complexity is pro-
portional to the number of ratings per user, which can be-
come a problem as the number of rating increases. For users
with a large number of ratings, we randomly sample a subset
of their ratings from the training set.

The memory requirement for this method is 3-4GB for the
62, 551, 438 ratings using standard dynamically allocated 2-
dim arrays. While ratings are used in a piecewise fashion,
this is done to mitigate time not memory complexity. In-
deed, all ratings are stored to memory when performing sam-
pling, for example.

5.3 BPR: Linear Combination
Here we fix either the user or item matrix in MF, while

updating the other. The fixed matrix is obtained from other
model types such as OCCF-MF. We call it BPR-Linear
Combination as the columns to be learned are in the form
of a linear combination.

6 Random Walk
Random Walk (RW) [2] based methods are performed on

graphs that generally include the items to be rated, and
eventually use the stationary probability of the walkers on
a node as the prediction of the rating for that node. Such
ratings can then be utilized to discriminate items in Track
2. Random Walk algorithms themselves are unlikely to out-
perform the mainstream algorithms such as an MF-based
one, but are nevertheless useful since they can provide di-
versity into our ensemble as it is the only algorithm we
exploit which explicitly considers the higher-order relation-
ships among items and users. Variations of RW come from
different kinds of graphs used, different surfing strategies,
and different initialization and restarting methods.



Table 5: BPR Linear Combination Results

Methods Features from %Valid %Test1

Linear MFuser OCCF-MF 6.1789 -
F400 λi = λj = 0, itr=212
Linear MFitem OCCF-MF 5.7101 5.7373
F400 λu = 0.0005, itr=40
Linear BPRKNN BPR-kNN 6.8850 6.7645
F2000 λu = 0.0005, itr=184
Square MFitem OCCF-MF 5.3559 5.3551
F400 λu = 0.0005, itr=110
Square BPRKNN BPR-kNN 6.6859 6.2687
F1000 λu = 0.0005, itr=86

Linear: use features generated by other models directly
Square: use original values and their squares as new features
Fn: This means the feature dimension.

6.1 Query Centered Random Walk on Taxon-
omy Graph

Our experimental results indicate that moving random
surfers on a item-user graphs yields an inferior performance
comparing to moving them on the item-relationship graph
(i.e. the taxonomy). The formula

r(t) = (1− α) ·A · r(t− 1) + α · q (8)

where r(t) is a stationary distribution of the random surfer
after t iterations, A is a symmetric adjacency matrix describ-
ing the connection of item taxonomy, q can be treated as the
restarting prior preference distribution of the specified user,
and α is a real number in [0,1].

6.1.1 Enhancing Similar Items
We wish to rank the six items associated with each user.

A näıve idea is to assign q as the ratings of the user to items.
However, performing this operation on the hierarchy graph
indeed abandons the opportunity to exploit item similarity.
Here we propose a new idea to multiply the item similarity
(i.e. user-based Pearson correlation values) with the ratings
to generate each element of q (note that we adjust the neg-
ative correlation values to 0, and then add 1 for each rated
item to distinguish them from the unrated ones). Then for
each item to be rated, we generate its own q and execute
RW to produce its rating.

6.1.2 Enhancing RW-model by Neighborhood Info
The predicted ratings generated previously are adjusted

using other tracks in the pseudo-taxonomy as described in
Section 2.

sui = ru,i +
1

|Gi|
∑
t∈Gi

ru,t
|Gt|

+ cu,i (9)

where the reinforcing term is

cu,i =

{ ∑
t∈R(u)

ru,tpi,t
K

: i has no album or artist

0 : otherwise

where ru,i is the RW score, Gi contains the items directly
related to i in the actual and pseudo-taxonomy and pi,t is
the Pearson correlation of i and t. We further adjust the
predictions for the tracks with no album/artist information
by adding an additional value which captures item similarity.
Note that the number K is usually very large in order to
avoid the dominance of such a term.

Table 6: Best Single Model Comparison

Type Model %Valid

Neighborhood Taxonomy Aware 4.2864
Neighborhood User-based kNN 8.7112
Neighborhood Predict on Neighbors 4.6548
Latent Information MF 4.0400
Latent Information pLSA 5.3997
Latent Information pPCA 9.2460
BPR BPR-MF 4.5530
BPR BPR-kNN 7.4853
BPR BPR-Linear Combination 5.3559
Random Walk Random Walk 6.0929

6.2 Experiment
In pre-processing, we assign tracks without albums or

artist to one of 50 pseudo-albums or artists. We also create
20 additional pseudo-groups, every item being assigned to
one. For Random Walk, we use α = 0.3, and K=106 in
the reinforcing term. We find t = 2 obtains the best perfor-
mance. The results reach 6.1% in validation.

7 Blending
The aim of blending is to combine a subset of single mod-

els to boost performance, producing diverse hybrid models
for the final ensemble. We use both linear and non-linear
blending methods in our methodology. Table 6 summarizes
the best single model performance of models in our frame-
work.

7.1 Score Transformation
Prior to blending, a transformation of the outputs of each

model into a consistent format is used as described below.
• raw score: no transformation
• normalized score: normalized to [0, 1]
• global ranking: replace the score by its rank among all

validation and testing instances, normalizing to [0, 1]
• user local ranking: replace the score by its rank among

the six items associated with the same user, normaliz-
ing to [0, 1]

Two (or more) transforms can be used concurrently in
blending methods. For example, the scores from M mod-
els are transformed into 2M inputs for blending as if there
were 2M models. Furthermore, we may apply 2-degree
polynomial expansion on the transformed score to produce
2M(2M+1)

2
additional inputs.

7.2 MF Interaction Blending
The Track 2 problem requires the system to address two

issues: whether an item is rated by the user, and if so,
whether the rating is high. Our neighborhood and pLSA
models focus more closely on the first issue, while the MF
model addresses the second.

We combine the MF model with either neighborhood or
pLSA models by multiplication, (MF )x · (NM or pLSA).
Here we use standard MF and not OCCF-MF as we wish to
restrict focus to “whether the rating is high.” The optimal
exponential term x can be learned through validation data
as shown in Table 7.

7.3 Supervised Classification
The task of Track 2 can be regarded as a classification

task, where highly rated items are in class 1 and unrated
items are in class 0. At the onset, this problem is very



Table 7: MF Interaction Blending Results

Model multiplied with MF x %Valid %Test1
Taxonomy-aware Neighborhood 6 5.4510 4.8159
User-based kNN 1 6.9423 -
pLSA 1.2 5.2712 5.2139
Individual Test1 error rate: MF 15.3534%, taxonomy-aware
neighborhood 5.8168%, pLSA 5.4643%. Validation error rate:
user-based kNN 8.7112%

unlike one of classification due to the lack of explicit fea-
tures. In our data, a rating is only associated with (u, i)
and the taxonomy of i. To apply classification algorithms
to our task, we first extract meaningful features from in-
puts and individual models, and then exploit a classifier to
learn combination strategies. The classification algorithms
investigated are support vector machines (SVM) and neu-
ral networks (NN). For prediction, the top-3 ranked testing
items (according to the decision value of the classifier) are
considered to be in class 1, while the remaining three are
considered to be in class 0.

7.3.1 Feature Engineering
Two kinds of features are used: factorization-based fea-

tures and taxonomy-based features. We take the user and
item feature vectors (pu,qi) learned by MF or BPR-MF
methods as the factorization-based features of users and
items. To utilize the full power of MF and BPR-MF, we
also include the prediction score (i.e. the inner product of
user and item feature vectors) as one feature.

The taxonomy-based features consist of one prediction
score from a variant of a taxonomy-aware neighborhood model,
and 8 features describing the taxonomic information of the
testing user-item pair. The prediction score is obtained from
Eq (1), except that the normalization term 1

Gi
vanishes.

The taxonomic features are listed below.

• binary indicator of whether the corresponding album/artist
of this track was rated by this user
• rating of this user of the corresponding album/artist
• the proportion of items rated by this user in the cor-

responding album/artist/genre groups
• the proportion of items rated by this user in the union

of all groups which contain this track

In the event that the taxonomic information for a given track
is missing, we use the pseudo-taxonomy.

Finally, 2-degree polynomial expansion is performed to
further expand the feature space.

7.3.2 Results
LIBLINEAR [4] is used as the SVM solver, with parame-

ters -g 0.125 -c 1. We also implemented a neural network
version containing 1 hidden layer, 50 neurons, and a learning
rate of 10−5. The results are shown in Table 8. Note that
for B200 the number of features is prohibitively large, thus
we include only the prediction score as model-based features
for classification.

7.4 Nonlinear Blending
We utilize non-linear methods to capture more informa-

tion through blending. AdaBoost, LogitBoost and Random
Forest methods provided by Weka [5] are exploited to blend
the taxonomy-based features (with pseudo-taxonomy) de-
scribed in Section 7.3, together with the scores predicted by
BPR-MF, pLSA and NMF models. The results are shown
in Table 9.

Table 8: Supervised Classification Result

Model Featuresa %Valid
SVM TX 8.2391

TXP 7.4566
B50 5.9928
B50, TX 3.5237
B50, TXP 3.5003
M50, TX 5.5872
N50, TX 4.2340
N50, TXP 4.1853
B200, TX 3.6571
B200, TXP 3.6341

NN N50, TX 4.9595
M50, TX 4.2311
B50, TXP 3.9085

a
TX: taxonomy-based features without pseudo-taxonomy
TXP: taxonomy-based features with pseudo-taxonomy
B50: factorization-based features: BPR-MF with f = 50
B200: prediction score of BPR-MF with f = 200
M50: factorization-based features: OCCF-MF with f = 50
N50: factorization-based features: OCCF-NMF with f = 50

Table 9: Nonlinear Blending Performance
Method Features %Valid
Adaboost taxonomy 7.5581
Random Forest taxonomy 9.0275
Adaboost taxonomy+models 5.3496
Random Forest taxonomy+models 5.5243
Logitboost taxonomy+models 3.8555

7.5 Linear Blending by Random Coordinate
Descent

Random Coordinate Descent (RCD) is an algorithm for
non-smooth optimization [10]. The main idea is to itera-
tively update the weight vector by choosing a random direc-
tion and an optimal descent step. To apply RCD for linear
blending, we begin with a base model, and iteratively update
it with a random linear combination of models.

We first discuss the base model and random combinations,
then introduce the update procedure. Finally, we present
the usage of bootstrap aggregation to further improve the
performance.

7.5.1 Base Model and Random Linear Combinations
The base model is a linear combination of individual mod-

els, where the weight of each model is learned by linear re-
gression for pairwise ranking. Let xu1, · · · ,xu6 be the vec-
tors of scores predicted on the six validation items of user
u, and bu1, · · · , bu6 be the binary label (1 or 0). The base
model is formed by the solution of

min
w

∑
u

∑
i,j∈{1,··· ,6},bui 6=buj

((bui − buj)−wT (xui − xuj))
2

We borrow an idea from sparse coding to choose candi-
dates for binary blending. In iteration t, we blend the best
existing blended model with another model Mt. Mt itself is
a random linear combination of kt arbitrary models where

kt =

{
1 :

if in iteration t− 1 blending
yields better results

kt−1 + 1 : otherwise

7.5.2 Optimal Linear Blending of Two Models
The updating procedure aims to solve the optimal linear

blending of two models. We use an efficient algorithm to



Table 10: RCD Blending Results

M transforma K orb B ×K %Valid %Test1
101 G 20000 2.7175 2.6333
18 G,N,P 10000 2.6691 2.5825
27 G,N,P 10000 2.5995 2.5706
27 G,N,P 90×1000 2.6084 2.5515
24 G,N,P 132×1000 2.6463 -
a

G: global ranking, N: normalized score, P: 2-degree
polynomial expansion (see Section 7.1)

b
Bootstrap aggregation is applied if × appears.

solve this problem. Let xui denotes the score of the i-th
validation item of user u predicted by one model, and yui
be the score predicted by another model. We would like to
determine wx, wy to minimize the error rate when ranking
the items by sui = wxxui +wyyui. When fixing wx = 1, the
error rate is piecewise constant respect to r =

wy

wx
and the

changes only happen when two items with different labels
swap their ranks. Every r must satisfy xui+ryui = xuj+ryuj
for some i, j ∈ {1, · · · , 6} and bui 6= buj .

For each user, there are only nine such rs, and we can
readily calculate the error for each instance to determine
the one which minimizes the error. The detailed algorithm
is listed in Algorithm 1. It takes only O(Nu logNu) time,
which can be completed for Track 2 data in a couple of
seconds on standard hardware.

7.5.3 Bootstrap Aggregation
To avoid overfitting, we apply bootstrap aggregation [1].

We generate B new validation sets by sampling instances
with replacement from our validation set. Blending by Ran-
dom Coordinate Descent is done on each of the B sets inde-
pendently, resulting B ws. Binary predictions are made by
each w, and the final score sui is the number of ws which
predict 1 on this u, i pair.

The results of blending by RCD are shown in Table 10.
The models to be blended are subsets of our models. K is
the number of iterations in RCD.

8 Ensemble
We believe that ensemble methods in this late stage should

be simple aggregate functions (e.g. linear) to avoid overfit-
ting. We investigate three types of simple ensembles: voting,
average, and weighted average.

We use two distinct versions of the weighted average en-
semble: single-phase and three-phase. In the single-phase
solution, we consider all of the track data per user while
performing the weight optimization phase. However, in the
three-phase solution, we divide this task into three phases.
In the first phase, weights are learned to assign the most
plausible positive instance and the most plausible negative
instance. In the second phase, a different set of weights
are learned to assign among the remaining 4 unassigned in-
stances the most likely positive and negative instances. In
the third phase, we perform the same operation on the two
remaining instances. Thus, there is a phase weight vector
w for each phase which minimizes the validation error, se-
lecting the pair of previously unassigned tracks which also
minimizes the error at each phase.

As mentioned in our framework in Section 2, our ensemble
process was divided into two stages. The former utilizes
the global ranking score transformation (as discussed in the
blending section), while the latter combines a set of ensemble
results from the first stage together with the blending models

using raw score to produce the final outputs.

9 Discussion
Track 2 of the KDD-Cup 2011 competition presented a

new challenge in recommendation. Instead of the standard
prediction of rating or similar metric on items in the dataset,
this task instead requires the discrimination of two types of
highly rated items: items rated high by the given user and
the items rated highly by others, but not rated by the given
user.

During the course of the competition, we made several
observations that are worth sharing.
• We find diversity to be very important and in combin-

ing many diverse models great performance improve-
ment can be made. Both exploiting different optimiza-
tion techniques for blending and blending the same
models using different parameters proved useful.
• As we aim to classify tracks rather than predict their

ratings (the latter akin to Track 1 of the KDD-Cup
2011), we find utilizing models which optimize the
track ranking and rated/unrated status is prudent.
• We observe that taxonomic information is very useful,

so developing multiple efficient methods which make
effective use of this information is important.
• As a validation set was not provided and the submis-

sion chances to the leaderboard are limited, creating a
good validation set for internal use is crucial. The er-
ror rate of our validation set was quite consistent with
the leaderboard score.
• We find that interaction between different models is

very useful. For example, using the output of one
model as the input of another.
• It is useful to perform negative sampling to capture

implicit feedback.
• Raw score transformation, such as ranking, is useful

for ensembling the predictions of multiple models.
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[16] A. Töscher and M. Jahrer. The BigChaos solution to
the Netflix grand prize. Tech. report, 2009.

[17] H.-H. Tu and H.-T. Lin. One-sided support vector
regression for multiclass cost-sensitive classification. In
Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 1095–1102,
Haifa, Israel, June 2010. Omnipress.



APPENDIX
A Notation

The mathematical notation listed below are used in this paper.
• u, v - user ID
• i, j - item ID
• rui - the real rating of item i given by user u
• sui - the predicted score of user u for item i
• R(u) - the set of all items rated by user u in the Train and Validation datasets
• R(i) - the set of all users who gave rating to item i in Train and Validation datasets
• Nu - the number of users
• Ni - the number of items
• Nval - the number of u, i pairs in validation set
• α, β, γ, δ - parameters in each model, which can be tuned
• η - the learning rate in SGD algorithm
• λ - regularization weight in SGD algorithm
• %Valid - Error rate on validation set
• %Test1 - Error rate on Test1 (leaderboard)

B Model Properties
Table 11 outlines the properties of the models used in our framework.

Table 11: Model Properties

Type Model S
a
m

p
le

d

T
a
x
o
n
o
m

y

R
es

id
u
a
l

A
L

R

Q
u
a
si

P
se

u
d
o

Neighborhood Taxonomy Aware X X
Neighborhood User-based kNN
Neighborhood Predict on Neighbors X
Latent Information MF X X X
Latent Information pLSA X
Latent Information pPCA X
BPR BPR-MF X X X X
BPR BPR-kNN X X
BPR BPR-Linear Combination X X
Random Walk Random Walk X X

ALR: Adaptive Learning Rate
Quasi: Quasi-album/artist data
Pseudo: Pseudo-taxonomy



C Algorithms

Algorithm 1 Optimal Linear Blending of Two Models

Input: xu1 · · ·xu6 and yu1 · · · yu6 for each user u
Output: the optimal wx and wy

S ← ∅
for all user u appears in validation set do

for all i, j ∈ {1, · · · , 6} do
if the i-th and j-th item have different labels then

r ← xuj−xui

yui−yuj

∆error ← Eu(r + ε)− Eu(r − ε) {Eu(r) is the number of errors on the 6 items of user u when taking score sui = xui + ryui.}
S ← S ∪ {(r,∆error)}

end if
end for

end for
sort S according to r in increasing order
rold ← −∞, err ←

∑
u error(rold, u)

T ← ∅
for all (r,∆error) ∈ S do

if r 6= rold then
T ← T ∪ {( rold+r

2
, err)}

rold ← r, err ← err + ∆error
end if

end for
T ← T ∪ {(∞, err)}
(rmin, errmin)← minerr(T )
(rmax, errmax)← maxerr(T )
if Nval − errmax < errmin then
wx ← −1, wy ← −rmax

else
wx ← 1, wy ← rmin

end if

D Predictor List
In this section we list all 127 models which participated in our final ensemble. The listed error rate is measured on our

internal validation set.

D.1 Neighborhood Predictors
• NBH-1: error: 7.6378%

Taxonomy-aware neighborhood model, λ = λg = 0, no normalized term 1
Gi

.

• NBH-2: error: 6.7591%
Taxonomy-aware neighborhood model, λ = λg = 0.
• NBH-3: error: 6.3937%

Taxonomy-aware neighborhood model augmented by Pearson’s correlation, λ = λg = 0.
• NBH-4: error: 6.0227%

Taxonomy-aware neighborhood model augmented by Pearson’s correlation, λ = λg = 0, pseudo-taxonomy.
• NBH-5: error: 6.4678%

Taxonomy-aware neighborhood model augmented by Pearson’s correlation, λ = λg = 0, square (ruj + 1).
• NBH-6: error: 6.0303%

Taxonomy-aware neighborhood model augmented by Pearson’s correlation, λ = λg = 0, square (ruj + 1), pseudo-
taxonomy.
• NBH-7: error: 5.8086%

Taxonomy-aware neighborhood model augmented by cosine similarity, common user support and square of BPR-kNN
correlation with f = 1000, λ = λg = 0.
• NBH-8: error: 5.8168%

Taxonomy-aware neighborhood model augmented by cosine similarity, Pearson’s correlation, common user support and
square of BPR-kNN correlation with f = 1000, λ = λg = 0.
• NBH-9: error: 4.2858%

Taxonomy-aware neighborhood model augmented by cosine similarity, Pearson’s correlation, common user support,
Kulczynski’s coefficient and BPR-kNN correlation with f = 1000, λ = 0.005, λg = 100.
• NBH-10: error: 4.6670%

Taxonomy-aware neighborhood model augmented by cosine similarity, Pearson’s correlation, common user support,
Kulczynski’s coefficient and square of BPR-kNN correlation with f = 1000, λ = 0.00005, λg = 0.



• NBH-11: error: 4.4960%
Taxonomy-aware neighborhood model augmented by cosine similarity, Pearson’s correlation, common user support,
Kulczynski’s coefficient and square of BPR-kNN correlation with f = 1000, λ = 0.005, λg = 0.
• NBH-12: error: 8.7112%

User-based kNN, k = 20, m = 2
• NBH-13: error: 8.7752%

User-based kNN, k = 20, m = 2, ln(|R(i)|) instead of ln(|R(i)|+ 10)
• NBH-14: error: 8.6065%

User-based kNN, k = 20, m = 2, ln(|R(i)|) instead of ln(|R(i)|+ 10), sim′(v, u) = sim(v, u) · ln(rvi + 20)
• NBH-15: error: 10.5500%

User-based kNN, k = 20, m = 1, ln(|R(i)|) instead of ln(|R(i)|+ 10), sim′(v, u) = sim(v, u) · rvi
• NBH-16: error 19.0046%

Item-based kNN, only consider items with the same artist as neighbors, k = 50.
• NBH-17: error 10.0835%

Item-based kNN, only consider items with the same artist as neighbors, increasing similarity by 1
#genre

if two items

belong to the same genre, k = 50.
• NBH-18: error: 8.1462%

Predicting on neighbors using inverse pLSA, f = 200.
• NBH-19: error: 4.6548%

Predicting on neighbors using BPR-MF, f = 200.

D.2 Latent Information Predictors
η denotes the learning rate. λu and λi are regularization weights of user and item features respectively. rneg stands for the

rating value of negative samples.
• LI-1: error 7.7858%

OCCF-MF, optimized by coordinate descent method, f = 100, λu = λi = 500.
• LI-2: error 7.4046%

OCCF-MF, optimized by coordinate descent method, f = 400, λu = λi = 714.
• LI-3: error 7.3571%

OCCF-MF, optimized by coordinate descent method, f = 800, λu = λi = 500.
• LI-4: error 7.7182%

OCCF-MF, optimized by coordinate descent method, f = 1200, λu = λi = 500.
• LI-5: error 6.0909%

OCCF-MF, optimized by SGD, fixed negative samples, f = 800, η = 0.0001, λu = λi = 1, rneg = −10.
• LI-6: error 6.0567%

OCCF-MF, optimized by SGD, fixed negative samples, f = 800, η = 0.0001, λu = λi = 1, rneg = −10.
• LI-7: error 5.3885%

OCCF-MF, optimized by SGD, f = 800, λu = λi = 1, rneg = −10.
• LI-8: error 4.7230%

OCCF-NMF, optimized by SGD, f = 800, η = 0.0001, λu = 0.3164, λi = 0.32768, rneg = −47.68.
• LI-9: error 4.4146%

OCCF-MF, optimized by SGD, f = 800, λu = 0.3164, λi = 0.32768, rneg = −47.68.
• LI-10: error 4.2514%

OCCF-NMF, optimized by SGD, f = 3200, η = 0.0001, λu = 0.3164, λi = 0.32768, rneg = −47.68.
• LI-11: error 4.3177%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.3245, λi = 0.32768, rneg = −47.68.
• LI-12: error 4.3398%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.2654, λi = 0.32768, rneg = −47.68.
• LI-13: error 4.3391%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.28440, λi = 0.32768, rneg = −47.68.
• LI-14: error 4.2854%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.31638, λi = 0.32768, rneg = −47.68.
• LI-15: error 4.2848%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.32021, λi = 0.32768, rneg = −47.68.
• LI-16: error 4.3177%

OCCF-MF, optimized by SGD, f = 3200, λu = 0.32445, λi = 0.32768, rneg = −47.68.
• LI-17: error 4.1197%

OCCF-MF, optimized by SGD with adaptive learning rate, f = 3200, η = 0.0001, λu = 0.3164, λi = 0.32768, rneg =
−47.68.
• LI-18: error 4.3840%

OCCF-MF, optimized by SGD, taxonomic sampling, f = 3200, η = 0.0001, λu = 0.3164, λi = 0.32768, rneg = −47.68.
• LI-19: error 6.8052%

OCCF-MF on quasi-album data, optimized by SGD, fixed negative samples, f = 800, η = 0.0001, λu = λi = 1,
rneg = −10.
• LI-20: error 9.9814%



OCCF-MF on quasi-artist data, optimized by SGD, fixed negative samples, f = 800, η = 0.0001, λu = λi = 1,
rneg = −10.
• LI-21: error 6.9874%

OCCF-MF, pairwise ranking objective, optimized by SGD, f = 800, λu = 1.5625, λi = 1.2193.
• LI-22: error 6.5249%

OCCF-MF two class, optimized by SGD, f = 800, λu = λi = 0.0001.
• LI-23: error 5.0735%

OCCF-MF three class, optimized by SGD, f = 800, λu = 0.00560, λi = 0.00864.
• LI-24: error 6.9878%

OCCF-MF three class, optimized by SGD, f = 800, λu = 0.00448, λi = 0.00297.
• LI-25: error 4.3602%

Combining 2 OCCF-MF with different initial, each optimized by SGD, f = 3200, λu = 0.3202, λi = 0.32768, rneg =
−47.68.
• LI-26: error 4.3447%

Combining 5 OCCF-MF with different initial, each optimized by SGD, f = 800, λu = 0.2654, λi = 0.32768, rneg =
−47.68.
• LI-27: error 4.0400%

OCCF-NMF, optimized by SGD, f = 800, η = 0.0001, λu = 0.3164, λi = 0.32768, rneg = −47.68.
• LI-28: error 7.8737%

Item correlation MF, optimized by SGD with adaptive learning rate, f = 200, λ = 0.064, rneg = −1.
• LI-29: error 10.3161%

Item correlation MF, pairwise ranking objective, optimized by SGD with adaptive learning rate, f = 20, λ = 0.00064.
• LI-30: error 9.7385%

Item correlation MF, pairwise ranking objective, optimized by SGD with adaptive learning rate, only treat high ratings
are positive, f = 20, λ = 0.00064.
• LI-31: error 7.9485%

Item correlation MF, pairwise ranking objective, optimized by SGD with adaptive learning rate, only treat high ratings
are positive, f = 800, λ = 0.000512.
• LI-32: error 5.4643%

Inverse pLSA, optimized by TEM, f = 2000, β = 0.95.
• LI-33: error 5.3997%

Inverse pLSA, optimized by TEM, f = 2000, β = 0.95.
• LI-34: error 8.1712%

Inverse pLSA on quasi-album data, optimized by EM, f = 500.
• LI-35: error 8.4780%

Inverse pLSA on quasi-artist data, optimized by EM, f = 500.
• LI-36: error 5.5391%

Weighted average of 9 inverse pLSA predictors.
• LI-37: error 9.2460%

pPCA, f = 20, #iter = 50.

D.3 Bayesian Personalized Ranking Predictors
• BPR-1: error 6.2364%

BPR-MF, f = 200, #iter = 94.
• BPR-2: error 5.9002%

BPR-MF on quasi-album data, f = 200, #iter = 174.
• BPR-3: error 5.8712%

BPR-MF on quasi-album data, f = 200, #iter = 192.
• BPR-4: error 5.9272%

BPR-MF based on residual of OCCF-MF, f = 50, α = 10, #iter = 356.
• BPR-5: error 5.2679%

Weighted BPR-MF, f = 200, #iter = 228.
• BPR-6: error 5.2699%

Weighted BPR-MF, f = 200.
• BPR-7: error 4.6614%

Weighted BPR-MF, optimized by SGD with adaptive learning rate, f = 400, α = 5, #iter = 610.
• BPR-8: error 4.8699%

Weighted BPR-NMF, optimized by SGD with adaptive learning rate, f = 400, α = 5, #iter = 354.
• BPR-9: error 4.553%

Weighted BPR-MF, optimized by SGD with adaptive learning rate, f = 400, α = 5, #iter = 434, reject sampled items
if present in validation or testing data.
• BPR-10: error 8.4398%

BPR-kNN, f = 200, η = 0.008, #iter = 142.
• BPR-11: error 8.7261%

BPR-kNN, f = 200, η = 0.008.



• BPR-12: error 7.4853%
BPR-kNN, f = 2000, #iter = 224.
• BPR-13: error 6.8850%

BPR-Linear based on item features of BPR-kNN, f = 2000, λu = 0.0005.
• BPR-14: error 6.6859%

BPR-Linear based on item features of BPR-kNN and square of the item features, λu = 0.0005, #iter = 86.
• BPR-15: error 6.1789%

BPR-Linear based on user features of OCCF-MF, f = 400, λi = λj = 0, #iter = 212.
• BPR-16: error 5.7101%

BPR-Linear based on item features of OCCF-MF, f = 400, λu = 0.0005, #iter = 40.
• BPR-17: error 5.3559%

BPR-Linear based on item features of OCCF-MF and square of the item features, f = 800, λu = 0.0005, #iter = 110.

D.4 Random Walk Predictors
• RW-1: error 7.2713%

Adjacency matrix trained via SGD, η = 0.001, #iter = 5, prestart = 0.3.
• RW-2: error 7.2561%

Adjacency matrix trained via SGD, η = 0.001, #iter = 6, prestart = 0.3.
• RW-3: error 6.8151%

Adjacency matrix trained via SGD, η = 0.001, #iter = 25, prestart = 0.3, using non-negative Pearson’s correlation,
adding 1 pseudo-album and pseudo-artist.
• RW-4: error 8.6910%

Adjacency matrix set according to number of neighbors, prestart = 0.3.
• RW-5: error 6.8105%

Adjacency matrix set according to taxonomy, prestart = 0.3, using 20 pseudo-albums and pseudo-artists.
• RW-6: error 6.2036%

Adjacency matrix set according to taxonomy, prestart = 0.3, using 50 pseudo-albums and pseudo-artists, and 20 pseudo
groups.
• RW-7: error 6.8131%

Adjacency matrix set according to taxonomy, prestart = 0.3, using 20 pseudo-albums and pseudo-artists, K = 10−6.
• RW-8: error 6.2488%

Adjacency matrix set according to taxonomy, prestart = 0.3, using 50 pseudo-albums and pseudo-artists, K = 10−6.
• RW-9: error 6.0929%

Adjacency matrix set according to taxonomy, prestart = 0.3, using 50 pseudo-albums and pseudo-artists, and 20 pseudo
groups, K = 10−6.

D.5 Blending Predictors
These blending predictors are trained on our internal validation data. POLY2 stands for 2-degree polynomial expansion.

• BL-1: error 6.9423%
MF interaction blending with user-based kNN, x = 1.
• BL-2: error 5.2712%

MF interaction blending with pLSA, x = 1.2.
• BL-3: error 5.4510%

MF interaction blending with taxonomy-aware neighborhood model, x = 6.
• BL-4: error 5.4824%

MF interaction blending with taxonomy-aware neighborhood model and total common support, x = 4.
• BL-5: error 5.8013%

MF interaction blending with taxonomy-aware neighborhood model and total Pearson’s correlation, x = 3.
• BL-6: error 5.2814%

MF interaction blending with taxonomy-aware neighborhood model and total common user support, x = 5.
• BL-7: error 5.6040%

MF interaction blending with taxonomy-aware neighborhood model and total set correlation, x = 3.
• BL-8: error 6.4830%

MF interaction blending with taxonomy-aware neighborhood model and total Spearman correlation, x = 4.
• BL-9: error 6.0656%

MF interaction blending with taxonomy-aware neighborhood model and total common, x = 7.
• BL-10: error 6.6053%

Linear SVM on 6 random walk predictions.
• BL-11: error 3.6192%

Linear SVM on 2 OCCF-MF and 1 random walk predictions.
• BL-12: error 8.2391%

Linear SVM on taxonomy-based features, C = 1, γ = 0.125.
• BL-13: error 7.4566%

Linear SVM on taxonomy-based features with pseudo-taxonomy, C = 1, γ = 0.125.
• BL-14: error 5.5872%



Linear SVM on taxonomy-based features and direct MF (f = 50) features, C = 1, γ = 0.125.
• BL-15: error 5.5262%

Linear SVM on taxonomy-based features with pseudo-taxonomy and direct MF (f = 50) features, C = 1, γ = 0.125.
• BL-16: error 3.5237%

Linear SVM on taxonomy-based features and weighted BPR-MF (f = 50, α = 5) features, C = 1, γ = 0.125.
• BL-17: error 3.5003%

Linear SVM on taxonomy-based features with pseudo-taxonomy and weighted BPR-MF (f = 50, α = 5) features, C = 1,
γ = 0.125.
• BL-18: error 3.6571%

Linear SVM on taxonomy-based features and weighted BPR-MF (f = 200, α = 5) features, C = 1, γ = 0.125.
• BL-19: error 3.6341%

Linear SVM on taxonomy-based features with pseudo-taxonomy and weighted BPR-MF (f = 200, α = 5) features,
C = 1, γ = 0.125.
• BL-20: error 3.9359%

Linear SVM on taxonomy-based features and OCCF-MF (f = 50) features, C = 1, γ = 0.125.
• BL-21: error 4.2340%

Linear SVM on taxonomy-based features and OCCF-NMF (f = 50) features, C = 1, γ = 0.125.
• BL-22: error 4.1853%

Linear SVM on taxonomy-based features with pseudo-taxonomy and OCCF-NMF (f = 50) features, C = 1, γ = 0.125.
• BL-23: error 5.0623%

Neural network on OCCF-NMF features, 1 hidden layer, 50 neurons, η = 0.0001.
• BL-24: error 4.9595%

Neural network on OCCF-NMF features with POLY2, 1 hidden layer, 50 neurons, η = 0.0001.
• BL-25: error 4.2311%

Neural network on OCCF-MF features with POLY2, 1 hidden layer, 50 neurons, η = 0.0001.
• BL-26: error 3.9085%

Neural network on BPR-MF features with POLY2, 1 hidden layer, 50 neurons, η = 0.0001.
• BL-27: error 7.5581%

Adaboost on taxonomy-based features, #iter = 500.
• BL-28: error 5.3496%

Adaboost on taxonomy-based features and predictions, #iter = 500.
• BL-29: error 3.8555%

Logitboost on taxonomy-based features and predictions, #iter = 200.
• BL-30: error 9.0275%

Random forests on taxonomy-based features, #tree = 40, maxdepth = 80.
• BL-31: error 5.5243%

Random forests on taxonomy-based features and predictions, #tree = 40, maxdepth = 80.
• BL-32: error 6.2995%

RCD on 6 taxonomy-aware neighborhood predictors, raw score with POLY2.
• BL-33: error 5.4122%

RCD on 2 BPR-MF predictors with quasi-album data and 2 BPR-MF predictors with quasi-artist data, raw score.
• BL-34: error 2.7698%

RCD on 18 predictors, global rank transform.
• BL-35: error 2.7539%

RCD on 21 predictors, global rank transform.
• BL-36: error 2.7135%

RCD on 21 predictors with global rank transform and 59 predictors with raw score.
• BL-37: error 2.7560%

RCD on 59 predictors, raw score.
• BL-38: error 2.7362%

RCD on 64 predictors, global rank transform.
• BL-39: error 2.7692%

RCD on 73 predictors, user local rank transform.
• BL-40: error 2.6691%

RCD on 18 predictors, POLY2 over normalized score and global rank transform, #iter = 10000.
• BL-41: error 2.5995%

RCD on 27 predictors, POLY2 over normalized score and global rank transform, #iter = 10000.
• BL-42: error 2.6760%

Bagging-RCD on 18 predictors, POLY2 over normalized score and global rank transform, 75 bags, #iter = 6000.
• BL-43: error 2.6463%

Bagging-RCD on 24 predictors, POLY2 over normalized score and global rank transform, 132 bags, #iter = 1000.
• BL-44: error 2.6084%

Bagging-RCD on 24 predictors, POLY2 over normalized score and global rank transform, 90 bags, #iter = 1000.
• BL-45: error 2.5817%



Bagging-RCD on 27 predictors, POLY2 over normalized score and global rank transform, 10 bags, #iter = 1000.


