
Carnegie Mellon University

15-415 Database Applications

Spring 2012, Faloutsos

Assignment 6: Schema Refinement

Lead TA: Bin Fu (binf@andrew.cmu.edu)

Solutions

Q1 XY->Z, XZ->Y and YZ->X all holds. There are many non-trivial (and related) FDs. Thanks for the

hardwork.

Q2.1

It holds:

CD->BD (F3, augmentation)

CD->A (Above + F2, transitivity)

Q2.2

BC->A does not hold. Consider the following counter example with 2 tuples:

a1 b1 c1 d1

a2 b1 c1 d2

Q2.3

It holds:

AD->A (reflexitivity)

A->B (F1 + F3, transitivity)

AD->B (above two, transitivity)

Q3.1

{A, D}

Q3.2

{A, B, C, D}

Q3.3

A->D and B->CD

Q3.4

Notice A and B must appear in the candidate key since they do not appear on the right hand side of any

dependencies. So the only candidate key is {A, B}.

Q4.1

It is neither loss-less nor dependency-preserving. AG->E is not preserved.

Q4.2

It is dependency-preserving, but not lossless.

Q4.3

It is lossless: First we can join {ABCE} and {AEG} lossless-ly, since {AE} is candidate key for {AGE}. Then,

{ABCEG} and {BD} can be again joined lossless-ly since {B} is a candidate key for {BD}.

It is also dependency-preserving.

Q5.1

The candidate key is {AC} and {BC}.

Q5.2

R is not in BCNF and not in 3NF. Notice for dependency B->D, B is not superkey, and D does not appear

in the candidate key.

Q5.3

They are two ways to decompose. Notice BC->A does not violate BCNF ({BC} is a superkey), so we can

start by either A->B or B->D.

Case1: If we start from A->B, we decomposite R to {AB, ACD}. Notice that now A->D holds, so {ACD} is

not in BCNF, thus it needs to benfurther decomposed to {AC, AD}. It is not dependency-preserving since

both BC->A and B->D are lost.

Case2: If we start from B->D, we decomposite R to {BD, ABC}. Then since {ABC} is not in BCNF, it is

further split to {AB, AC}. It is not dependency-preserving since BC->A is lost.

Q5.4

Many of you use 3NF synthesis to construct a dependency-preserving 3NF decomposition.

If using the instructions in page 627:

Case1: Starting from {AB, AC, AD}, which is a lossless 3NF decomposition. Notice that it is not

dependency-preserving (BC->A and B->D). So we add another two relations {ABC, BD}. The result is {ABC,

BD, AB, AC, AD} (You can eliminate either AB or AC since it is included in {ABC}).

Case2: Starting from {BD, ABC}, which is a lossless 3NF decomposition. Notice that it’s already

dependency-preserving, so it’s the final answer.

