# Carnegie Mellon University <br> 15-415 Database Applications <br> Spring 2012, Faloutsos <br> Assignment 6: Schema Refinement <br> Lead TA: Bin Fu (binf@andrew.cmu.edu) 

## Solutions

Q1 $X Y->Z, X Z->Y$ and $Y Z->X$ all holds. There are many non-trivial (and related) FDs. Thanks for the hardwork.

## Q2.1

It holds:

CD->BD (F3, augmentation)
CD->A (Above + F2, transitivity)

## Q2.2

BC->A does not hold. Consider the following counter example with 2 tuples:
a1 b1 c1 d1
a2 b1 c1 d2

## Q2.3

It holds:
AD->A (reflexitivity)
A->B (F1 + F3, transitivity)
AD->B (above two, transitivity)

## Q3.1

$\{A, D\}$

## Q3.2

$\{A, B, C, D\}$

## Q3.3

$A->D$ and $B->C D$

## Q3.4

Notice $A$ and $B$ must appear in the candidate key since they do not appear on the right hand side of any dependencies. So the only candidate key is $\{A, B\}$.

## Q4.1

It is neither loss-less nor dependency-preserving. AG->E is not preserved.

## Q4.2

It is dependency-preserving, but not lossless.

## Q4.3

It is lossless: First we can join $\{A B C E\}$ and $\{A E G\}$ lossless-ly, since $\{A E\}$ is candidate key for $\{A G E\}$. Then, $\{A B C E G\}$ and $\{B D\}$ can be again joined lossless-ly since $\{B\}$ is a candidate key for $\{B D\}$.

It is also dependency-preserving.

## Q5.1

The candidate key is $\{A C\}$ and $\{B C\}$.

## Q5.2

$R$ is not in BCNF and not in 3NF. Notice for dependency $B->D, B$ is not superkey, and D does not appear in the candidate key.

## Q5.3

They are two ways to decompose. Notice BC->A does not violate BCNF (\{BC\} is a superkey), so we can start by either $\mathrm{A}->\mathrm{B}$ or $\mathrm{B}->\mathrm{D}$.

Case1: If we start from $A->B$, we decomposite $R$ to $\{A B, A C D\}$. Notice that now $A->D$ holds, so $\{A C D\}$ is not in BCNF, thus it needs to benfurther decomposed to $\{A C, A D\}$. It is not dependency-preserving since both $B C->A$ and $B->D$ are lost.

Case2: If we start from $B->D$, we decomposite $R$ to $\{B D, A B C\}$. Then since $\{A B C\}$ is not in $B C N F$, it is further split to $\{A B, A C\}$. It is not dependency-preserving since $B C->A$ is lost.

## Q5.4

Many of you use 3NF synthesis to construct a dependency-preserving 3NF decomposition.

If using the instructions in page 627:

Case1: Starting from $\{A B, A C, A D\}$, which is a lossless $3 N F$ decomposition. Notice that it is not dependency-preserving ( $B C->A$ and $B->D$ ). So we add another two relations $\{A B C, B D\}$. The result is $\{A B C$, $B D, A B, A C, A D\}$ (You can eliminate either $A B$ or $A C$ since it is included in $\{A B C\}$ ).

Case2: Starting from $\{B D, A B C\}$, which is a lossless $3 N F$ decomposition. Notice that it's already dependency-preserving, so it's the final answer.

