Carnegie Mellon University
15-415A Database Applications
C. Faloutsos - Fall 2002

Homework 5 - Due: Nov. 12, 3pm

Reminders
- **Due: Tue. Nov. 12, 3pm, in class** (ignore the original due date of 11/5 in the schedule)
- Please, TYPE your answers - handwritten material may get 0 points at the grader's discretion.
- All homeworks should be done individually, not in groups.
- Total weight: 3% of the course grade.
- Estimated time, for someone who knows the material: 60-70 minutes

1 **Syntactic Query optimization [15 pts]**

From the textbook, solve exercise 13.2 (p. 525 in the 4th edition; or equivalently, ex. 12.3, p. 434, in the 3rd edition). Write an efficient relational-algebra expression, equivalent to that query, and justify your choice.

2 **Equivalence of expressions [15 pts]**

3 **Selectivities [30 pts]**

Consider relation \(r(A, B, C) \) and \(s(A, D, F) \), with the following statistics:
- \(n_r = 100,000 \) tuples in \(r \)
- \(n_s = 200,000 \) tuples in \(s \)
- \(b_r = 15,000 \) blocks (= pages) that \(r \) occupies
- \(b_s = 30,000 \) blocks (= pages) that \(s \) occupies
- \(V(A, r) = 10,000 \) distinct values of \(A \) in \(r \)
- \(V(B, r) = 50,000 \) distinct values of \(B \) in \(r \)
- \(V(A, s) = 30,000 \) distinct values of \(A \) in \(s \)

Give your estimates for the following questions:
1. How many tuples qualify for the query ([5 pts])

   ```
   select *
   from r
   where A = 12
   ```

2. How many tuples qualify for the query ([10 pts])

   ```
   select *
   from r
   where A = 12 or B = 13
   ```

3. How many tuples qualify for the join ([15 pts])

   ```
   r \bowtie s
   ```

4. **Joins [40 pts]**

 For the same two relations r and s as before, with the same statistics, estimate the number of disk (=block = page) accesses, for the join r \bowtie s, for the following settings:

 1. Block nested loop join, with r as the outer relation, and m=2 buffers only (each buffer can hold one page) ([8 pts])
 2. Repeat, with s as the outer relation, and m=2 buffers only ([8 pts])
 3. Block nested loop join, with r as the outer relation, and m=100 buffers. Specify how many buffers are allocated to each relation, to minimize the number of disk accesses. ([10 pts])
 4. Consider the optimal setting for block nested loop join
 - What is the smallest number of disk accesses D_{min} we could hope for, with block nested loop join, and with enough buffers m_{best}? ([4 pts])
 - What is the smallest number of buffers m_{best} in this case? ([4 pts])
 - Which relation should be the outer relation in this optimal case? ([3 pts])
 - How many buffers should we allocate to the outer relation? ([3 pts])

 End of questions