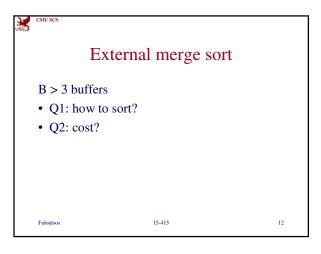
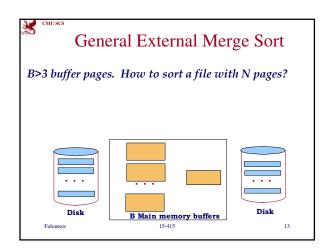
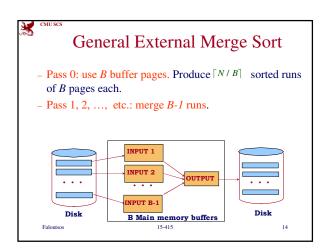
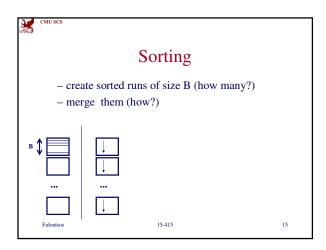
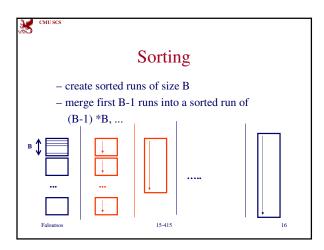

Faloutsos

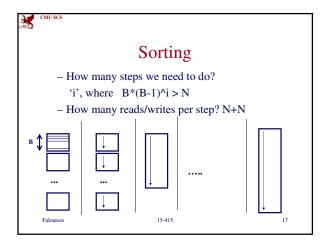


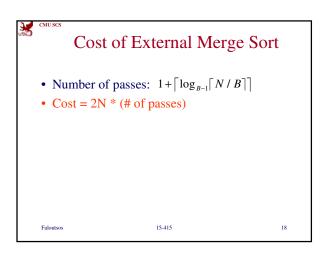












Cost of External Merge Sort

- E.g., with 5 buffer pages, to sort 108 page file:
 - Pass 0: $\lceil 108 / 5 \rceil = 22$ sorted runs of 5 pages each (last run is only 3 pages)
 - Pass 1: $\lceil 22/4 \rceil = 6$ sorted runs of 20 pages each (last run is only 8 pages)
 - Pass 2: 2 sorted runs, 80 pages and 28 pages
 - Pass 3: Sorted file of 108 pages

Formula check: $\lceil \log_4 22 \rceil = 3 \dots + 1 \rightarrow \underline{4 \text{ passes}} \ \sqrt{}$

Number of Passes of External Sort

(I/O cost is 2N times number of passes)

N	B=3	B=5	B=9	B=17	B=129	B=257
100	7	4	3	2	1	1
1,000	10	5	4	3	2	2
10,000	13	7	5	4	2	2
100,000	17	9	6	5	3	3
1,000,000	20	10	7	5	3	3
10,000,000	23	12	8	6	4	3
100,000,000	26	14	9	7	4	4
1,000,000,000	30	15	10	8	5	4

15-415

Outline

- two-way merge sort
- external merge sort
- → fine-tunings
 - B+ trees for sorting

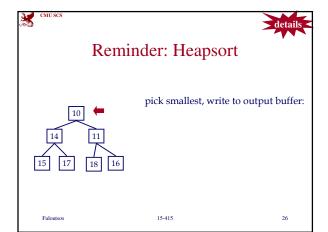
15-415

21

CMU SCS			
Internal Sort Algor	ithm	_	
 Quicksort is a fast way to sort in met But: we get B buffers, and produce 1 B. 	•	_	
Can we produce longer runs than that	ıt?		
B=3 B=3	Heapsort: • Pick smallest	_	
	OutputRead from nextbuffer	_	
Faloutsos 15-415	24		

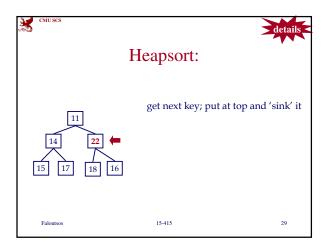
25

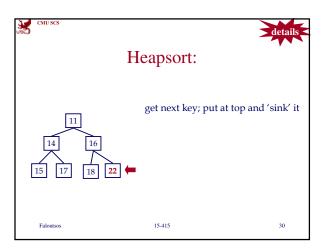
CMU SC

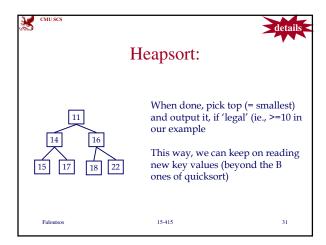

Internal Sort Algorithm

- Quicksort is a fast way to sort in memory.
- But: we get B buffers, and produce 1 run of length

 R
- Can we produce longer runs than that?
- Alternative: "tournament sort" (a.k.a. "heapsort", "replacement selection")
- Produces runs of length $\sim 2*B$
- Clever, but not implemented, for subtle reasons: tricky memory management on variable length records


Faloutsos


15,415



×

CMU SCS

Outline

- two-way merge sort
- external merge sort
- fine-tunings
 - which internal sort for Phase 0?
- → blocked I/O
 - B+ trees for sorting

Faloutsos

15-415

22

33

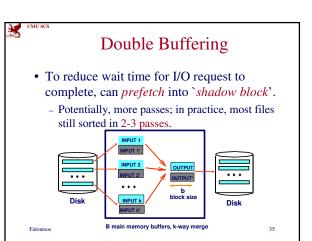
CMU SCS

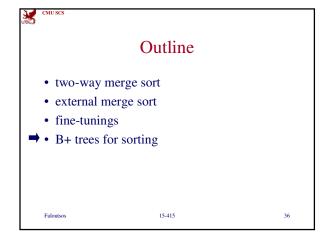
Blocked I/O & double-buffering

- So far, we assumed random disk access
- Cost changes, if we consider that runs are written (and read) sequentially
- What could we do to exploit it?

Faloutsos

15-415


Blocked I/O & double-buffering


- So far, we assumed random disk access
- Cost changes, if we consider that runs are written (and read) sequentially
- What could we do to exploit it?
- A1: Blocked I/O (exchange a few r.d.a for several sequential ones)
- A2: double-buffering

Faloutsos

15-415

34

M C

CMO SCS

Using B+ Trees for Sorting

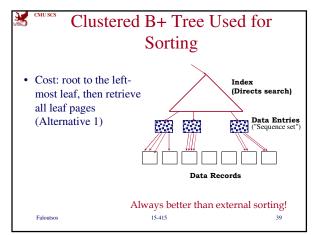
- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- *Idea*: Can retrieve records in order by traversing leaf pages.
- Is this a good idea?
- Cases to consider:
 - B+ tree is clustered
 - B+ tree is not clustered

Faloutsos

15,415

37

CMU SCS


Using B+ Trees for Sorting

- Scenario: Table to be sorted has B+ tree index on sorting column(s).
- *Idea*: Can retrieve records in order by traversing leaf pages.
- Is this a good idea?
- Cases to consider:
 - B+ tree is clustered Good idea!
 - B+ tree is not clustered Could be a very bad idea!

Faloutsos

15-415

38

• Alternative (2) for data entries; each data entry contains *rid* of a data record. In general, *one I/O per data record!*Data Entries ("Sequence set") Data Records Data Records

External Sorting vs. Unclustered Index

١	N	Sorting	p=1	p=10	p=100
I	100	200	100	1,000	10,000
١	1,000	2,000	1,000	10,000	100,000
1	10,000	40,000	10,000	100,000	1,000,000
١	100,000	600,000	100,000	1,000,000	10,000,000
١	1,000,000	8,000,000	1,000,000	10,000,000	100,000,000
	10,000,000	80,000,000	10,000,000	100,000,000	1,000,000,000

p: # of records per page B=1,000 and block size=32 for sorting p=100 is the more realistic value. 41

3	CMU SCS

Summary

- External sorting is important
- External merge sort minimizes disk I/O cost:
 - Pass 0: Produces sorted *runs* of size *B* (# buffer pages).
 - Later passes: merge runs.
- Clustered B+ tree is good for sorting; unclustered tree is usually very bad.

Faloutsos	15-415	42