SCS 15-415 **Faloutsos**

Carnegie Mellon Univ. Dept. of Computer Science 15-415 - Database Applications

Lecture #10 (R&G ch8) File Organizations and Indexing

Overview

Review

- Index classification
- Cost estimation

Review: Memory, Disks

- Storage Hierarchy: cache, RAM, disk, tape, ...
 - Can't fit everything in RAM (usually).
- "Page" or "Frame" unit of buffer management in RAM.
- "Page" or "Block" unit of interaction with disk.
- Importance of "locality" and sequential access for good disk performance.
- Buffer pool management
 - Slots in RAM to hold Pages
 - Policy to move Pages between RAM & disk

SCS 15-415 **Faloutsos**

Review: File Storage

- Page or block is OK when doing I/O, but higher levels of DBMS operate on records, and files of records.
- We saw:
 - How to organize records within pages.
 - How to keep pages of records on disk
- Today we'll see:
 - How to support operations on files of records efficiently.

Files

FILE: A collection of pages, each containing a collection of records.

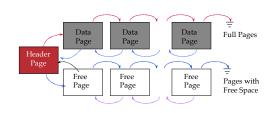
- Must support:
 - insert/delete/modify record
 - read a particular record (specified using record id)
 - scan all records (possibly with some conditions on the records to be retrieved)

Alternative File Organizations

Many alternatives exist, each good for some situations, and not so good in others:

- Heap files: Suitable when typical access is a file scan retrieving all records.
- Sorted Files: Best for retrieval in some order, or for retrieving a `range' of records.
- Index File Organizations: (will cover shortly...)

How to find records quickly?


• E.g., student.gpa = '3'

Q: On a heap organization, with B blocks, how many disk accesses?

Faloutsos

CMU SCS 15-415

Heap File Implemented Using Lists

- The header page id and Heap file name must be stored someplace.
- Each page contains 2 `pointers' plus data.

Faloutsos

CMU SCS 15-415

How to find records quickly?

• E.g., student.gpa = '3'

Q: On a heap organization, with ${\it B}$ blocks, how many disk accesses?

A: *B*

Faloutsos

How to accelerate searches?

• A: Indices, like:

Folontono

CMU SCS 15-415

Example: Simple Index on GPA Directory 2 2 2.5 3 3.5 Data entries: 1.2 1.7 1.8 1.9 2.2 2.4 2.7 2.7 2.9 3.2 3.3 3.3 3.3 3.8 3.8 3.8 4.0 (Index File) Data Records An index contains a collection of data entries, and supports efficient retrieval of records matching a given search condition Faloussos CMUSCS 15-415

Indexes

- Sometimes, we want to retrieve records by specifying the *values in one or more fields*, e.g.,
 - $-% \frac{1}{2}\left(-\right) =-\left(-\right) \left(-\right) =-\left(-\right) \left(-\right)$
 - Find all students with a gpa > 3
- An <u>index</u> on a file speeds up selections on the <u>search key</u> <u>fields</u> for the index.
 - Any subset of the fields of a relation can be the search key for an index on the relation.
 - Search key is not the same as key (e.g., doesn't have to be unique).

Faloutsos

Index Search Conditions

• Search condition = <search key, comparison operator>

Examples...

(1) Condition: Department = "CS"

- Search key: "CS"

– Comparison operator: equality (=)

(2) Condition: GPA > 3

- Search key: 3

– Comparison operator: greater-than (>)

Enlantono

CMU SCS 15-415

Overview

- Review
- Index classification

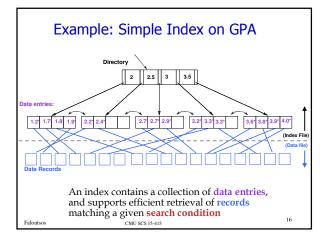
- Representation of data entries in index

- Clustered vs. Unclustered
- Primary vs. Secondary
- Dense vs. Sparse
- Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutso

SCS 15-415

Details


- 'data entries' == what we store at the bottom of the index pages
- what would you use as data entries?
- (3 alternatives here)

Faloutsos

CMU SCS 15-415

15

١	-	
ı	L	
3		

Alternatives for Data Entry k* in Index

- 1. Actual data record (with key value **k**)
- 2. < k, rid of matching data record>
- 3. < k, list of rids of matching data records>

utsos CMU SCS 15-415

Alternatives for Data Entry k* in Index

17

- 1. Actual data record (with key value k)
- 2. < k, rid of matching data record>
- 3. < k, list of rids of matching data records>
- Choice is orthogonal to the indexing technique.
 - Examples of indexing techniques: B+ trees,
 - Typically, index contains auxiliary info that directs searches to the desired data entries
- Can have multiple (different) indexes per file.

hash-based structures, R trees, ...

 E.g. file sorted on age, with a hash index on name and a B+tree index on salary.

Faloutsos CMU SCS 15-415

Alternatives for Data Entries (Contd.)

Alternative 1:

Actual data record (with key value **k**)

- Then, this is a clustering/sparse index, and constitutes a file organization (like Heap files or sorted files).
- At most one index on a given collection of data records can use Alternative 1.
- Saves pointer lookups but can be expensive to maintain with insertions and deletions.

E-1---

CMU SCS 15-415

19

Alternatives for Data Entries (Contd.)

Alternative 2

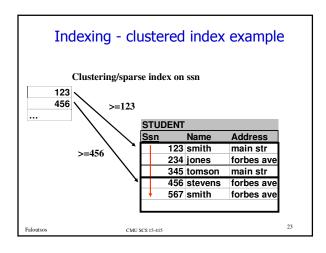
< k, rid of matching data record> and Alternative 3

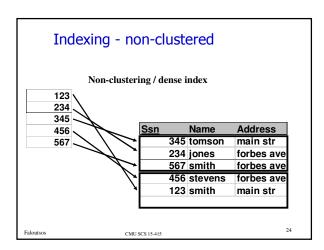
- <k, list of rids of matching data records>
- Easier to maintain than Alternative 1.
- If more than one index is required on a given file, at most one index can use Alternative 1; rest must use Alternatives 2 or 3.
- Alternative 3 more compact than Alternative 2, but leads to variable sized data entries even if search keys are of fixed length.
- Even worse, for large rid lists the data entry would have to span multiple pages!

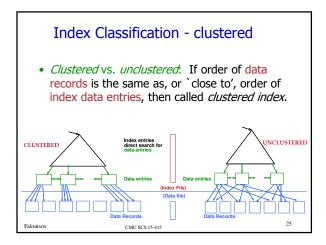
loutsos CMU

20

Overview


- Review
- Index classification
 - Representation of data entries in index




- Clustered vs. Unclustered
- Primary vs. Secondary
- Dense vs. Sparse
- Single Key vs. Composite
- Indexing technique
- · Cost estimation

Faloutso

CMU SCS 15-415

Index Classification - clustered

- A file can have a clustered index on at most one search key.
- Cost of retrieving data records through index varies *greatly* based on whether index is clustered!
- Note: Alternative 1 implies clustered, but not vice-versa.

Enlantono

CMU SCS 15-415

26

Clustered vs. Unclustered Index

- Cost of retrieving records found in range scan:
 - Clustered: cost =
 - Unclustered: cost ≈
- What are the tradeoffs????

Faloutsos

S 15-415

Clustered vs. Unclustered Index

- Cost of retrieving records found in range scan:
 - Clustered: cost = # pages in file w/matching records
 - Unclustered: cost \approx # of matching index data entries
- What are the tradeoffs????

Faloutsos

CMU SCS 15-415

Clustered vs. Unclustered Index

- Cost of retrieving records found in range scan:
 - Clustered: cost = # pages in file w/matching records
 - Unclustered: cost ≈ # of matching index <u>data entries</u>
- What are the tradeoffs????
 - Clustered Pros:
 - Efficient for range searches
 - May be able to do some types of compression
 - Clustered Cons:
 - Expensive to maintain (on the fly or sloppy with reorganization)

Enlantone

CMU SCS 15-415

29

Overview

- Review
- Index classification
 - Representation of data entries in index
 - Clustered vs. Unclustered

- Primary vs. Secondary
- Dense vs. Sparse
- Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutso

Primary vs. Secondary Index

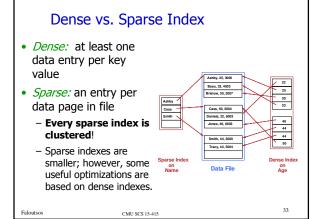
- Primary: index key includes the file's primary key
- Secondary: any other index
 - Sometimes confused with Alt. 1 vs. Alt. 2/3
 - Primary index never contains duplicates
 - Secondary index may contain duplicates
 - If index key contains a candidate key, no duplicates => unique index

Faloutsos

CMU SCS 15-415

		_
		-
		_

Overview


- Review
- Index classification
 - Representation of data entries in index
 - Clustered vs. Unclustered
 - Primary vs. Secondary

- Dense vs. Sparse
- Single Key vs. Composite
- Indexing technique
- Cost estimation

Faloutsos

CMU SCS 15-415

Overview

- Review
- Index classification
 - Representation of data entries in index

CMU SCS 15-415

- Clustered vs. Unclustered
- Primary vs. Secondary
- Dense vs. Sparse

- Single Key vs. Composite
 - Indexing technique
- Cost estimation

Faloutso

Overview

search key for range queries."Lexicographic" order.

- Review
- Index classification
 - Representation of data entries in index

CMU SCS 15-415

- Clustered vs. Unclustered
- Primary vs. Secondary
- Dense vs. Sparse
- Single Key vs. Composite
- **-**
 - Indexing technique
- Cost estimation

Faloutso

J SCS 15-415

Tree vs. Hash-based index

- Hash-based index
 - Good for equality selections.
 - File = a collection of <u>buckets</u>. Bucket = <u>primary</u> page plus 0 or more <u>overflow</u> pages.
 - Hash function h: h(r.search_key) = bucket in which record r belongs.
- Tree-based index
 - Good for range selections.
 - Hierarchical structure (Tree) directs searches
 - Leaves contain data entries sorted by search key value
 - B+ tree: all root->leaf paths have equal length (height)

Faloutsos

Overview • Review • Index classification - Representation Cost estimation CMU SCS 15-415 Cost estimation Heap file Sorted Clustered • Unclustured tree index • Unclustered hash index Methods Operations(?) Cost estimation • Heap file • scan Sorted • equality search • range search Clustered • Unclustured tree index • insertion • Unclustered hash index deletion

Methods

Consider only I/O cost;suppose file spans *B* pages

CMU SCS 15-415

Operations

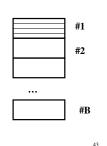
Cost estimation

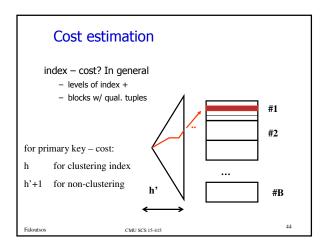
	scan	eq	range	ins	del
Неар					
sorted					
Clust.					
u-tree					
u-hash					

Assume that:

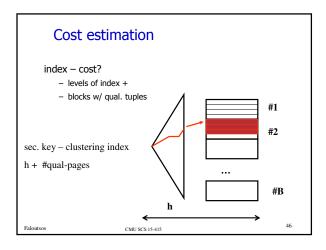
- Clustered index spans 1.5*B* pages (due to empty space)
 Data entry= 1/10 of data record

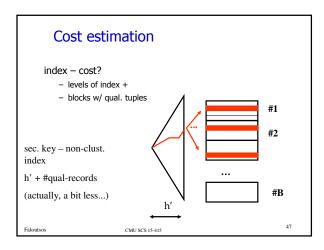
 CMU SCS 15-415


 41


Cost estimation

	scan	eq	range	ins	del
Неар	В				
sorted	В				
Clust.	1.5B				
u-tree	~B				
u-hash	~B				


Cost estimation


- heap: seq. scan
- sorted: binary search
- index search

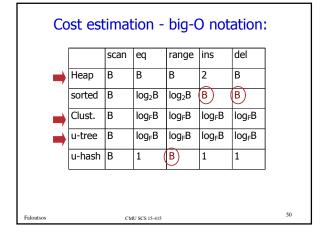
Cost estimation range ins del scan eq Heap В B/2 sorted B log₂B Clust. 1.5B h u-tree ~B 1+h' u-hash ∼B ~2 h= height of btree $\sim \log_F{(1.5B)}$ h'= height of unclustered index btree $\sim \log_F{(1.5B)}$

Cost estimation

	scan	eq	range	ins	del
Неар	В	B/2	В		
sorted	В	log₂B	<- +m		
Clust.	1.5B	h	<- +m		
u-tree	~B	1+h'	<- +m'		
u-hash	~B	~2	В		

m: # of qualifying pages m': # of qualifying records

Faloutsos


CMU SCS 15-415

Cost estimation

	scan	eq	range	ins	del
Неар	В	B/2	В	2	Search+1
sorted	В	log₂B	<- +m	Search+B	Search+B
Clust.	1.5B	h	<- +m	Search+1	Search+1
u-tree	~B	1+h'	<- +m'	Search+2	Search+2
u-hash	~B	~2	В	Search+2	Search+2

Faloutsos

5-415

Index specification in SQL:1999

CREATE INDEX IndAgeRating ON Students
WITH STRUCTURE=BTREE,
KEY = (age, gpa)

Faloutsos

MU SCS 15-415

Summary

- To speed up selection queries: index.
- Terminology:
 - Clustered / non-clustered index
 - primary / secondary index
- Typically, B-tree index
- hashing is only good for equality search
- At most one clustered index per table
 - many non-clustered ones are possible
 - composite indexes are possible

Faloutsos

CMU SCS 15-4