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15-826: Multimedia Databases
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Lecture #16: Text - part III:
Vector space model and clustering
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NOT in the midterm exam

Must-Read Material

* MM Textbook, Chapter 6
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Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

# ¢ Indexing - similarity search
* Data Mining

15-826 Copyright: C. Faloutsos (2017) 3

% CMU SCS

Indexing - Detailed outline

+ primary key indexing

+ secondary key / multi-key indexing
* spatial access methods

* fractals

#- text

* multimedia
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Text - Detailed outline

o text
— problem
— full text scanning
— inversion
— signature files
— clustering
— information filtering and LSI
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Vector Space Model and
Clustering

* keyword queries (vs Boolean)

* each document: -> vector (HOW?)
* each query: -> vector

» search for ‘similar’ vectors
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Vector Space Model and
Clustering
* main idea:
document
aaron data Z00
‘indexing’
...data... |——— | | | | | |
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V (= vocabulary size)
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Vector Space Model and
Clustering
Then, group nearby vectors together
* QI: cluster search?
* Q2: cluster generation?

Two significant contributions
 ranked output

* relevance feedback
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Vector Space Model and

Clustering

* cluster search: visit the (k) closest
superclusters; continue recursively
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Vector Space Model and

Clustering
* ranked output: easy!
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Vector Space Model and

Clustering

* relevance feedback (brilliant idea)
[Roccio” 73]

o ©
0 ® MD TRs
o©
(*}

°
CS TRs e o

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS
Vector Space Model and

Clustering

* relevance feedback (brilliant idea)
[Roccio” 73]

e How?
o ©
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Vector Space Model and

Clustering

« How? A: by adding the ‘good’ vectors and
subtracting the ‘bad’ ones
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Outline - detailed

* main idea
* cluster search

# * cluster generation
* cvaluation
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Cluster generation

* Problem:
— given N points in V dimensions,
— group them
o
°5
o©
O
%
oo
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g CMU SCS

Cluster generation

* Problem:
— given N points in V dimensions,
— group them
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Cluster generation

We need
* Q1: document-to-document similarity
* Q2: document-to-cluster similarity
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Cluster generation

Q1: document-to-document similarity
(recall: ‘bag of words’ representation)

e DI1: {‘data’, ‘retrieval’, ‘system’ }

e D2: { ‘lung’, ‘pulmonary’, ‘system’}
* distance/similarity functions?
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Cluster generation

Al: # of words in common
A2: ... normalized by the vocabulary sizes
A3: ... etc

About the same performance - prevailing one:
cosine similarity
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Cluster generation

cosine similarity:
similarity(D1, D2) = cos(0) =
sum(vy; * v, ;) / len(v,)/ len(v,)

D1

D2
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Cluster generation

cosine similarity - observations:
* related to the Euclidean distance

2

* weights v;; : according to tf/idf
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Cluster generation

cosine similarity - observations:
* related to the Euclidean distance

* weights v;; : according to tf/idf

2

d =2%sin(6/2)

D2 d? =2%(1-cos(b))
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Cluster generation

tf (“term frequency’ )

high, if the term appears very often in this
document.

idf ( ‘inverse document frequency’)

penalizes ‘common’ words, that appear in almost
every document
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Cluster generation

We need
* QI: document-to-document similarity
#' Q2: document-to-cluster similarity

6%
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Cluster generation

 Al: min distance ( ‘single-link’)
o A2: max distance ( ‘all-link’)
* A3: avg distance

Ad4: distance to centroid
o ©
o
, \O
>

o
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Cluster generation

Al: min distance ( ‘single-link’ )
— leads to elongated clusters

A2: max distance ( ‘all-link”)

— many, small, tight clusters

A3: avg distance

— in between the above

A4: distance to centroid

— fast to compute
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We have

clusters

15-826

Cluster generation

 document-to-document similarity
» document-to-cluster similarity

Q: How to group documents into ‘natural’
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Cluster generation

A: *many-many* algorithms - in two groups
[VanRijsbergen]:

* theoretically sound (O(N"2))

— independent of the insertion order

* iterative (O(N), O(N log(N))

15-826 Copyright: C. Faloutsos (2017) 28

15-826



C. Faloutsos

g CMU SCS

Cluster generation - ‘sound’
methods

* Approach#1: dendrograms - create a
hierarchy (bottom up or top-down) - choose
a cut-off (how?) and cut

| .......... 0.8

....... 03
1 |__| 0.1

cat  tiger horse cow
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Cluster generation - ‘sound’
methods

» Approach#2: min. some statistical criterion
(eg., sum of squares from cluster centers)

— like ‘k-means’
— but how to decide ‘k’?
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Cluster generation - ‘sound’
methods
* Approach#3: Graph theoretic [Zahn]:

— build MST;

— delete edges longer than 3* std of the local
average

15-826 Copyright: C. Faloutsos (2017) 31

g CMU SCS

Cluster generation - ‘sound’
methods

* Result: e why 3’9

e variations

» Complexity?
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Cluster generation - ‘iterative’
methods

general outline:
» Choose ‘seeds’ (how?)

* assign each vector to its closest seed
(possibly adjusting cluster centroid)

* possibly, re-assign some vectors to improve
clusters

Fast and practical, but ‘unpredictable’
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Cluster generation - ‘iterative’
methods

general outline:
» Choose ‘seeds’ (how?)

* assign each vector to its closest seed
(possibly adjusting cluster centroid)

* possibly, re-assign some vectors to improve
clusters

Fast and practical, but ‘unpredictable’
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Cluster generation

one way to estimate # of clusters k: the ‘cover
coefficient’” [Can+] ~ SVD
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Outline - detailed

* main idea

* cluster search

* cluster generation
#° evaluation
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Evaluation

* Q: how to measure ‘goodness’ of one
distance function vs another?

* A: ground truth (by humans) and

— ‘precision” and ‘recall’
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Evaluation

* precision = (retrieved & relevant) / retrieved
— 100% precision -> no false alarms

* recall = (retrieved & relevant)/ relevant
— 100% recall -> no false dismissals
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No false Evaluation
alarms

1deal

1 )
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o No false
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Evaluation

+ compressing such a curve into a single
number:
— 11-point average precision

—etc
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Conclusions — main ideas

‘bag of words’ idea + keyword queries
 Cosine similarity

* Ranked output

» Relevance feedback
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