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Must-Read Material 

•  MM Textbook, Chapter 6 
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 
•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 
•  fractals 
•  text 
•  multimedia 
•  ... 
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Text - Detailed outline 
•  text 

–  problem 
–  full text scanning 
–  inversion 
–  signature files 
–  clustering  
–  information filtering and LSI 
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Vector Space Model and 
Clustering 

•  keyword queries (vs Boolean) 
•  each document: -> vector (HOW?) 
•  each query: -> vector 
•  search for ‘similar’ vectors 
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Vector Space Model and 
Clustering 

•  main idea: 

document 

...data... 

aaron zoo data 

V (= vocabulary size) 

‘indexing’ 
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Vector Space Model and 
Clustering 

Then, group nearby vectors together 
•  Q1: cluster search? 
•  Q2: cluster generation? 

Two significant contributions 
•  ranked output 
•  relevance feedback 
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Vector Space Model and 
Clustering 

•  cluster search: visit the (k) closest 
superclusters; continue recursively 

CS TRs 

MD TRs 
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Vector Space Model and 
Clustering 

•  ranked output: easy! 

CS TRs 

MD TRs 
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Vector Space Model and 
Clustering 

•  relevance feedback (brilliant idea) 
[Roccio’73] 

CS TRs 

MD TRs 
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Vector Space Model and 
Clustering 

•  relevance feedback (brilliant idea) 
[Roccio’73] 

•  How? 

CS TRs 

MD TRs 
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Vector Space Model and 
Clustering 

•  How?  A: by adding the ‘good’ vectors and 
subtracting the ‘bad’ ones 

CS TRs 

MD TRs 
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Outline - detailed 

•  main idea 
•  cluster search 
•  cluster generation 
•  evaluation 
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Cluster generation 
•  Problem: 

–   given N points in V dimensions, 
–  group them 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) 16 

Cluster generation 
•  Problem: 

–   given N points in V dimensions, 
–  group them 
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Cluster generation 
We need 
•  Q1: document-to-document similarity 
•  Q2: document-to-cluster similarity 
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Cluster generation 
Q1: document-to-document similarity 
(recall: ‘bag of words’ representation) 
•  D1: {‘data’, ‘retrieval’, ‘system’} 
•  D2: {‘lung’, ‘pulmonary’, ‘system’} 
•  distance/similarity functions? 
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Cluster generation 
A1: # of words in common 
A2: ........ normalized by the vocabulary sizes 
A3: .... etc 
 
About the same performance - prevailing one: 

cosine similarity 
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Cluster generation 
cosine similarity: 

 similarity(D1, D2) = cos(θ) =  
sum(v1,i * v2,i) / len(v1)/ len(v2) 

θ 

D1 

D2 
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Cluster generation 
cosine similarity - observations: 
•  related to the Euclidean distance 
•  weights vi,j : according to tf/idf 

 

θ 

D1 

D2 d 
r = 1 
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Cluster generation 
cosine similarity - observations: 
•  related to the Euclidean distance 
•  weights vi,j : according to tf/idf 

 

θ 

D1 

D2 d 
r = 1 

d =2*sin(θ/2) 

d2 =2*(1-cos(θ)) 

DETAILS 
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Cluster generation 
tf (‘term frequency’) 

high, if the term appears very often in this 
document. 

idf (‘inverse document frequency’) 
penalizes ‘common’ words, that appear in almost 

every document 
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Cluster generation 
We need 
•  Q1: document-to-document similarity 
•  Q2: document-to-cluster similarity 

? 
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Cluster generation 
•  A1: min distance (‘single-link’) 
•  A2: max distance (‘all-link’) 
•  A3: avg distance 
•  A4: distance to centroid 

? 
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Cluster generation 
•  A1: min distance (‘single-link’) 

–  leads to elongated clusters 
•  A2: max distance (‘all-link’) 

– many, small, tight clusters 
•  A3: avg distance 

–  in between the above 
•  A4: distance to centroid 

–  fast to compute 
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Cluster generation 
We have 
•  document-to-document similarity 
•  document-to-cluster similarity 
 
Q: How to group documents into ‘natural’ 

clusters 
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Cluster generation 

A: *many-many* algorithms - in two groups 
[VanRijsbergen]: 

•  theoretically sound (O(N^2)) 
–  independent of the insertion order 

•  iterative (O(N), O(N log(N)) 
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Cluster generation - ‘sound’ 
methods 

•  Approach#1: dendrograms - create a 
hierarchy (bottom up or top-down) - choose 
a cut-off (how?) and cut 

cat tiger horse cow 
0.1 
0.3 

0.8 
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Cluster generation - ‘sound’ 
methods 

•  Approach#2: min. some statistical criterion 
(eg., sum of squares from cluster centers) 
–  like ‘k-means’ 
–  but how to decide ‘k’? 
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Cluster generation - ‘sound’ 
methods 

•  Approach#3: Graph theoretic [Zahn]: 
–  build MST; 
–  delete edges longer than 3* std of the local 

average 
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Cluster generation - ‘sound’ 
methods 

•  Result: •  why ‘3’? 

•  variations 

•  Complexity? 
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Cluster generation - ‘iterative’ 
methods 

general outline: 
•  Choose ‘seeds’ (how?) 
•  assign each vector to its closest seed 

(possibly adjusting cluster centroid) 
•  possibly, re-assign some vectors to improve 

clusters 
Fast and practical, but ‘unpredictable’ 
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Cluster generation - ‘iterative’ 
methods 

general outline: 
•  Choose ‘seeds’ (how?) 
•  assign each vector to its closest seed 

(possibly adjusting cluster centroid) 
•  possibly, re-assign some vectors to improve 

clusters 
Fast and practical, but ‘unpredictable’ 
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Cluster generation 

one way to estimate # of clusters k: the ‘cover 
coefficient’ [Can+] ~ SVD 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) 36 

Outline - detailed 

•  main idea 
•  cluster search 
•  cluster generation 
•  evaluation 
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Evaluation 

•  Q: how to measure ‘goodness’ of one 
distance function vs another? 

•  A: ground truth (by humans) and 
–  ‘precision’  and ‘recall’ 
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Evaluation 

•  precision = (retrieved & relevant) / retrieved 
–  100% precision -> no false alarms 

•  recall = (retrieved & relevant)/ relevant 
–  100% recall -> no false dismissals 
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Evaluation 

recall 

precision 

0 1 
0 

1 
ideal 

No false  
alarms 

No false 
dismissals 
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Evaluation 

•  compressing such a curve into a single 
number: 
–  11-point average precision 
–  etc 
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Conclusions – main ideas 

•  ‘bag of words’ idea + keyword queries 
•  Cosine similarity 
•  Ranked output 
•  Relevance feedback 
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