

NOT in the midterm exam

15-826: Multimedia Databases and Data Mining

Lecture #16: Text - part III:
Vector space model and clustering
C. Faloutsos

NOT in the midterm exam

Must-Read Material

- MM Textbook, Chapter 6

15-826

Copyright: C. Faloutsos (2017)

2

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- • Indexing - similarity search
- Data Mining

15-826

Copyright: C. Faloutsos (2017)

3

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- • text
- multimedia
- ...

15-826

Copyright: C. Faloutsos (2017)

4

CMU SCS

Text - Detailed outline

- text
 - problem
 - full text scanning
 - inversion
 - signature files
 - clustering
 - information filtering and LSI

15-826 Copyright: C. Faloutsos (2017) 5

CMU SCS

Vector Space Model and Clustering

- keyword queries (vs Boolean)
- each document: \rightarrow vector (HOW?)
- each query: \rightarrow vector
- search for ‘similar’ vectors

15-826 Copyright: C. Faloutsos (2017) 6

CMU SCS

Vector Space Model and Clustering

- main idea:

document

...data... $\xrightarrow{\text{'indexing'}}$ aaron data zoo
 \longleftrightarrow
 V (= vocabulary size)

15-826 Copyright: C. Faloutsos (2017) 7

CMU SCS

Vector Space Model and Clustering

Then, group nearby vectors together

- Q1: cluster search?
- Q2: cluster generation?

Two significant contributions

- ranked output
- relevance feedback

15-826 Copyright: C. Faloutsos (2017) 8

CMU SCS

Vector Space Model and Clustering

- cluster search: visit the (k) closest superclusters; continue recursively

CS TRs

MD TRs

15-826

Copyright: C. Faloutsos (2017)

9

CMU SCS

Vector Space Model and Clustering

- ranked output: easy!

CS TRs

MD TRs

15-826

Copyright: C. Faloutsos (2017)

10

CMU SCS

Vector Space Model and Clustering

- relevance feedback (brilliant idea) [Rocchio '73]

CS TRs

MD TRs

15-826

Copyright: C. Faloutsos (2017)

11

CMU SCS

Vector Space Model and Clustering

- relevance feedback (brilliant idea) [Rocchio '73]
- How?

CS TRs

MD TRs

15-826

Copyright: C. Faloutsos (2017)

12

CMU SCS

 CMU SCS

Outline - detailed

- main idea
- cluster search
- cluster generation
- evaluation

15-826

Copyright: C. Faloutsos (2017)

14

CMU SCS

CMU SCS

Cluster generation

We need

- Q1: document-to-document similarity
- Q2: document-to-cluster similarity

15-826

Copyright: C. Faloutsos (2017)

17

Cluster generation

Q1: document-to-document similarity
(recall: ‘bag of words’ representation)

- D1: { ‘data’ , ‘retrieval’ , ‘system’ }
- D2: { ‘lung’ , ‘pulmonary’ , ‘system’ }
- distance/similarity functions?

15-826

Copyright: C. Faloutsos (2017)

18

Cluster generation

A1: # of words in common

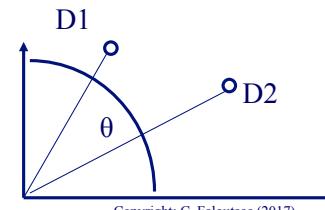
A2: normalized by the vocabulary sizes

A3: etc

About the same performance - prevailing one:
cosine similarity

15-826

Copyright: C. Faloutsos (2017)


19

Cluster generation

cosine similarity:

$$\text{similarity}(D1, D2) = \cos(\theta) = \frac{\sum(v_{1,i} * v_{2,i})}{\text{len}(v_1) / \text{len}(v_2)}$$

15-826

Copyright: C. Faloutsos (2017)

20

CMU SCS

Cluster generation

cosine similarity - observations:

- related to the Euclidean distance
- weights v_{ij} : according to tf/idf

15-826

Copyright: C. Faloutsos (2017)

21

CMU SCS

Cluster generation

cosine similarity - observations:

- related to the Euclidean distance
- weights v_{ij} : according to tf/idf

15-826

Copyright: C. Faloutsos (2017)

22

$d = 2 * \sin(\theta/2)$

$d^2 = 2 * (1 - \cos(\theta))$

CMU SCS

Cluster generation

tf ('term frequency')

high, if the term appears very often in this document.

idf ('inverse document frequency')

penalizes 'common' words, that appear in almost every document

15-826

Copyright: C. Faloutsos (2017)

23

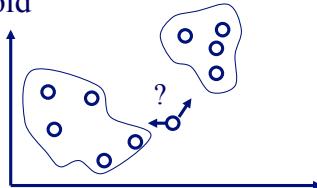
CMU SCS

Cluster generation

We need

- Q1: document-to-document similarity
- Q2: document-to-cluster similarity

15-826


Copyright: C. Faloutsos (2017)

24

CMU SCS

Cluster generation

- A1: min distance (‘single-link’)
- A2: max distance (‘all-link’)
- A3: avg distance
- A4: distance to centroid

15-826 Copyright: C. Faloutsos (2017) 25

CMU SCS

Cluster generation

- A1: min distance (‘single-link’)
 - leads to elongated clusters
- A2: max distance (‘all-link’)
 - many, small, tight clusters
- A3: avg distance
 - in between the above
- A4: distance to centroid
 - fast to compute

15-826 Copyright: C. Faloutsos (2017) 26

CMU SCS

Cluster generation

We have

- document-to-document similarity
- document-to-cluster similarity

Q: How to group documents into ‘natural’ clusters

15-826 Copyright: C. Faloutsos (2017) 27

CMU SCS

Cluster generation

A: *many-many* algorithms - in two groups [VanRijsbergen]:

- theoretically sound ($O(N^2)$)
 - independent of the insertion order
- iterative ($O(N)$, $O(N \log(N))$)

15-826 Copyright: C. Faloutsos (2017) 28

CMU SCS

Cluster generation - ‘sound’ methods

- Approach#1: dendrograms - create a hierarchy (bottom up or top-down) - choose a cut-off (how?) and cut

15-826 Copyright: C. Faloutsos (2017) 29

CMU SCS

Cluster generation - ‘sound’ methods

- Approach#2: min. some statistical criterion (eg., sum of squares from cluster centers)
 - like ‘k-means’
 - but how to decide ‘k’ ?

15-826 Copyright: C. Faloutsos (2017) 30

CMU SCS

Cluster generation - ‘sound’ methods

- Approach#3: Graph theoretic [Zahn]:
 - build MST;
 - delete edges longer than $3 * \text{std}$ of the local average

15-826 Copyright: C. Faloutsos (2017) 31

CMU SCS

Cluster generation - ‘sound’ methods

- Result:
 - why ‘3’ ?
 - variations
 - Complexity?

15-826 Copyright: C. Faloutsos (2017) 32

Cluster generation - ‘iterative’ methods

general outline:

- Choose ‘seeds’ (how?)
- assign each vector to its closest seed (possibly adjusting cluster centroid)
- possibly, re-assign some vectors to improve clusters

Fast and practical, but ‘unpredictable’

15-826 Copyright: C. Faloutsos (2017) 33

Cluster generation - ‘iterative’ methods

general outline:

- Choose ‘seeds’ (how?)
- assign each vector to its closest seed (possibly adjusting cluster centroid)
- possibly, re-assign some vectors to improve clusters

Fast and practical, but ‘unpredictable’

15-826 Copyright: C. Faloutsos (2017) 34

Cluster generation

one way to estimate # of clusters k : the ‘cover coefficient’ [Can+] \sim SVD

15-826 Copyright: C. Faloutsos (2017) 35

Outline - detailed

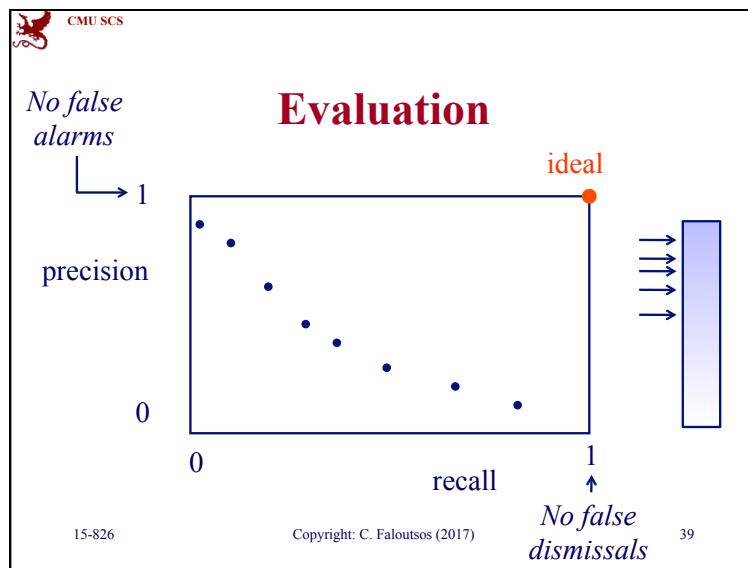
- main idea
- cluster search
- cluster generation
- evaluation

15-826 Copyright: C. Faloutsos (2017) 36

CMU SCS

Evaluation

- Q: how to measure ‘goodness’ of one distance function vs another?
- A: ground truth (by humans) and
 - ‘precision’ and ‘recall’


15-826 Copyright: C. Faloutsos (2017) 37

CMU SCS

Evaluation

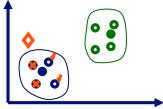
- precision = (retrieved & relevant) / retrieved
 - 100% precision \rightarrow no false alarms
- recall = (retrieved & relevant) / relevant
 - 100% recall \rightarrow no false dismissals

15-826 Copyright: C. Faloutsos (2017) 38

CMU SCS

Evaluation

A small scatter plot with a single red dot at the top-right corner (1, 1). The plot is enclosed in a blue rectangular frame.


- compressing such a curve into a single number:
 - 11-point average precision
 - etc

15-826 Copyright: C. Faloutsos (2017) 40

CMU SCS

Conclusions – main ideas

- ‘bag of words’ idea + keyword queries
- Cosine similarity
- Ranked output
- Relevance feedback

15-826 Copyright: C. Faloutsos (2017) 41

CMU SCS

References

- *Modern Information Retrieval* R. Baeza-Yates, Acm Press, Berthier Ribeiro-Neto, February 1999
- Can, F. and E. A. Ozkarahan (Dec. 1990). "Concepts and Effectiveness of the Cover-Coefficient-Based Clustering Methodology for Text Databases." ACM TODS 15(4): 483-517.
- Noreault, T., M. McGill, et al. (1983). A Performance Evaluation of Similarity Measures, Document Term Weighting Schemes and Representation in a Boolean Environment. *Information Retrieval Research*, Butterworths.

15-826 Copyright: C. Faloutsos (2017) 42

CMU SCS

References

- Rocchio, J. J. (1971). Relevance Feedback in Information Retrieval. *The SMART Retrieval System - Experiments in Automatic Document Processing*. G. Salton. Englewood Cliffs, New Jersey, Prentice-Hall Inc.
- Salton, G. (1971). *The SMART Retrieval System - Experiments in Automatic Document Processing*. Englewood Cliffs, New Jersey, Prentice-Hall Inc.

15-826 Copyright: C. Faloutsos (2017) 43

CMU SCS

References

- Salton, G. and M. J. McGill (1983). *Introduction to Modern Information Retrieval*, McGraw-Hill.
- Van-Rijsbergen, C. J. (1979). *Information Retrieval*. London, England, Butterworths.
- Zahn, C. T. (Jan. 1971). "Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters." *IEEE Trans. on Computers* C-20(1): 68-86.

15-826 Copyright: C. Faloutsos (2017) 44