
15-826 C. Faloutsos

1

CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees

C. Faloutsos

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #2

Must-read material

•  MM-Textbook, Chapter 5.2
•  Ramakrinshan+Gehrke, Chapter 28.6
•  Guttman, A. (June 1984).

R-Trees: A Dynamic Index Structure for Spatial
Searching. Proc. ACM SIGMOD, Boston, Mass.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #3

R-trees – impact:
•  Popular method; like multi-d B-trees
•  guaranteed utilization; fast search (low dim’s)
•  Used in practice:

– Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805_01/sdo_intr.htm

–  IBM-DB2 spatial extender
– Postgres: create index … using [rtree | gist]
– Sqlite3: www.sqlite.org/rtree.html

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #4

Outline

Goal: ‘Find similar / interesting things’
•  Intro to DB
•  Indexing - similarity search
•  Data Mining

15-826 C. Faloutsos

2

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #5

Indexing - Detailed outline
•  primary key indexing
•  secondary key / multi-key indexing
•  spatial access methods

–  problem dfn
–  z-ordering
– R-trees
–  ...

•  text
•  ...

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #6

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #7

Reminder: problem
•  Given a collection of geometric objects

(points, lines, polygons, ...)
•  organize them on disk, to answer spatial

queries (range, nn, etc)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #8

R-trees

•  z-ordering: cuts regions to pieces -> dup.
elim.

•  how could we avoid that?
•  Idea: try to extend/merge B-trees and k-d

trees

15-826 C. Faloutsos

3

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #9

(first attempt: k-d-B-trees)

•  [Robinson, 81]: if f is the fanout, split point-
set in f parts; and so on, recursively

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #10

(first attempt: k-d-B-trees)

•  But: insertions/deletions are tricky (splits
may propagate downwards and upwards)

•  no guarantee on space utilization

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #11

R-trees

•  [Guttman 84] Main idea: allow parents to
overlap!

Antonin Guttman
[http://www.baymoon.com/~tg2/]

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #12

R-trees

•  [Guttman 84] Main idea: allow parents to
overlap!
– => guaranteed 50% utilization
– => easier insertion/split algorithms.
–  (only deal with Minimum Bounding Rectangles

- MBRs)

15-826 C. Faloutsos

4

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #13

R-trees

•  eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

A
B

C

D
E

F
G

H

I

J

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #14

R-trees

•  eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4
F G D E

H I J A B C

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #15

R-trees

•  eg., w/ fanout 4:

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #16

R-trees - format of nodes

•  {(MBR; obj-ptr)} for leaf nodes

P1 P2 P3 P4

A B C
x-low; x-high
y-low; y-high

...

obj
ptr ...

15-826 C. Faloutsos

5

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #17

R-trees - format of nodes

•  {(MBR; node-ptr)} for non-leaf nodes

P1 P2 P3 P4

A B C

x-low; x-high
y-low; y-high

...

node
ptr ...

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #18

R-trees - range search?

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #19

R-trees - range search?

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #20

R-trees - range search

Observations:
•  every parent node completely covers its

‘children’
•  a child MBR may be covered by more than

one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-826 C. Faloutsos

6

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #21

R-trees - range search

Observations - cont’d
•  a point query may follow multiple branches.
•  everything works for any dimensionality

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #22

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #23

R-trees - insertion

•  eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C X

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #24

R-trees - insertion

•  eg., rectangle ‘X’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C X

X

15-826 C. Faloutsos

7

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #25

R-trees - insertion

•  eg., rectangle ‘Y’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C Y

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #26

R-trees - insertion

•  eg., rectangle ‘Y’: extend suitable parent.

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C Y
Y

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #27

R-trees - insertion

•  eg., rectangle ‘Y’: extend suitable parent.
•  Q: how to measure ‘suitability’?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #28

R-trees - insertion

•  eg., rectangle ‘Y’: extend suitable parent.
•  Q: how to measure ‘suitability’?
•  A: by increase in area (volume) (more

details: later, under ‘performance analysis’)
•  Q: what if there is no room? how to split?

15-826 C. Faloutsos

8

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #29

R-trees - insertion

•  eg., rectangle ‘W’

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4

P1 P2 P3 P4

F G D E

H I J A B C

W

K

K

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #30

R-trees - insertion

•  eg., rectangle ‘W’ - focus on ‘P1’ - how
to split?

A
B

C

P1

W

K

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #31

R-trees - insertion

•  eg., rectangle ‘W’ - focus on ‘P1’ - how
to split?

A
B

C

P1

W

K •  (A1: plane sweep,

until 50% of rectangles)

•  A2: ‘linear’ split

•  A3: quadratic split

•  A4: exponential split

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #32

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’

seed1

seed2
R

15-826 C. Faloutsos

9

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #33

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’
•  Q: how to measure ‘closeness’?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #34

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’
•  Q: how to measure ‘closeness’?
•  A: by increase of area (volume)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #35

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’

seed1

seed2
R

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #36

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’

seed1

seed2
R

15-826 C. Faloutsos

10

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #37

R-trees - insertion & split

•  pick two rectangles as ‘seeds’;
•  assign each rectangle ‘R’ to the ‘closest’

‘seed’
•  smart idea: pre-sort rectangles according to

delta of closeness (ie., schedule easiest
choices first!)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #38

R-trees - insertion - pseudocode

•  decide which parent to put new rectangle
into (‘closest’ parent)

•  if overflow, split to two, using (say,) the
quadratic split algorithm
–  propagate the split upwards, if necessary

•  update the MBRs of the affected parents.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #39

R-trees - insertion -
observations

•  many more split algorithms exist (next!)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #40

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

15-826 C. Faloutsos

11

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #41

R-trees - deletion

•  delete rectangle
•  if underflow

–  ??

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #42

R-trees - deletion

•  delete rectangle
•  if underflow

–  temporarily delete all siblings (!);
–  delete the parent node and
–  re-insert them

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #43

R-trees - deletion

•  variations: later (eg. Hilbert R-trees w/ 2-
to-1 merge)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #44

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

15-826 C. Faloutsos

12

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #45

R-trees - range search

pseudocode:
 check the root
 for each branch,
 if its MBR intersects the query rectangle
 apply range-search (or print out, if this
 is a leaf)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #46

R-trees - nn search

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #47

R-trees - nn search

•  Q: How? (find near neighbor; refine...)

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #48

R-trees - nn search

•  A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

15-826 C. Faloutsos

13

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #49

R-trees - nn search

•  A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #50

R-trees - nn search

•  A1: depth-first search; then, range query

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #51

R-trees - nn search

•  A2: [Roussopoulos+, sigmod95]:
–  priority queue, with promising MBRs, and their

best and worst-case distance
•  main idea:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #52

R-trees - nn search

A
B

C

D
E

F
G

H

I

J

P1

P2

P3

P4 q

consider only P2 and P4, for illustration

15-826 C. Faloutsos

14

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #53

R-trees - nn search

D
E

H

J
P2

P4 q

worst of P2

best of P4
=> P4 is useless

for 1-nn

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #54

R-trees - nn search

D
E

H

J
P2

P4 q

worst of P2

best of P4

=> P4 is useless

for 1-nn

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #55

R-trees - nn search

D
E

P2
q

worst of P2

•  what is really the worst of, say, P2?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #56

R-trees - nn search

P2
q

•  what is really the worst of, say, P2?
•  A: the smallest of the two red segments!

15-826 C. Faloutsos

15

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #57

R-trees - nn search

•  variations: [Hjaltason & Samet] incremental
nn:
–  build a priority queue
–  scan enough of the tree, to make sure you have

the k nn
–  to find the (k+1)-th, check the queue, and scan

some more of the tree
•  ‘optimal’ (but, may need too much memory)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #58

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #59

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #60

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

15-826 C. Faloutsos

16

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #61

R-trees - spatial joins

Spatial joins: find (quickly) all
 counties intersecting lakes

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #62

R-trees - spatial joins

Assume that they are both organized in R-trees:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #63

R-trees - spatial joins

Assume that they are both organized in R-trees:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #64

R-trees - spatial joins
for each parent P1 of tree T1
 for each parent P2 of tree T2
 if their MBRs intersect,
 process them recursively (ie., check their
 children)

15-826 C. Faloutsos

17

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #65

R-trees - spatial joins
Improvements - variations:
- [Seeger+, sigmod 92]: do some pre-filtering; do

plane-sweeping to avoid N1 * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #66

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #67

R-trees - performance analysis
•  How many disk (=node) accesses we’ll

need for
–  range
–  nn
–  spatial joins

•  why does it matter?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #68

R-trees - performance analysis
•  How many disk (=node) accesses we’ll

need for
–  range
–  nn
–  spatial joins

•  why does it matter?
•  A: because we can design split etc

algorithms accordingly; also, do query-
optimization

15-826 C. Faloutsos

18

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #69

R-trees - performance analysis
•  How many disk (=node) accesses we’ll

need for
–  range
–  nn
–  spatial joins

•  why does it matter?
•  A: because we can design split etc

algorithms accordingly; also, do query-
optimization

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #70

R-trees - performance analysis
•  motivating question: on, e.g., split, should

we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #71

R-trees - performance analysis
•  How many disk accesses for range queries?

–  query distribution wrt location?
–  “ “ wrt size?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #72

R-trees - performance analysis
•  How many disk accesses for range queries?

–  query distribution wrt location? uniform; (biased)
–  “ “ wrt size? uniform

15-826 C. Faloutsos

19

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #73

R-trees - performance analysis
•  easier case: we know the positions of parent

MBRs, eg:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #74

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries)?

P1

x1

x2

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #75

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

POINT queries)?

P1

x1

x2

0 1
0

1

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #76

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

POINT queries)? A: x1*x2

P1

x1

x2

0 1
0

1

15-826 C. Faloutsos

20

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #77

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

0 1
0

1

q1

q2

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #78

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

x1

x2

q1

q2

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #79

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #80

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries of size q1xq2)?

P1 x2
q2

x1 q1

15-826 C. Faloutsos

21

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #81

R-trees - performance analysis
•  How many times will P1 be retrieved (unif.

queries of size q1xq2)? A: (x1+q1)*(x2+q2)

P1 x2
q2

x1 q1

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #82

R-trees - performance analysis
•  Thus, given a tree with N nodes (i=1, ... N) we

expect
 #DiskAccesses(q1,q2) =
 sum (xi,1 + q1) * (xi,2 + q2)
 = sum (xi,1 * xi,2) +
 q2 * sum (xi,1) +
 q1* sum (xi,2)
 q1* q2 * N

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #83

R-trees - performance analysis
•  Thus, given a tree with N nodes (i=1, ... N) we

expect
 #DiskAccesses(q1,q2) =
 sum (xi,1 + q1) * (xi,2 + q2)
 = sum (xi,1 * xi,2) +
 q2 * sum (xi,1) +
 q1* sum (xi,2)
 q1* q2 * N

‘volume’

surface area

 count

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #84

R-trees - performance analysis
Observations:
•  for point queries: only volume matters
•  for horizontal-line queries: (q2=0): vertical

length matters
•  for large queries (q1, q2 >> 0): the count N

matters

15-826 C. Faloutsos

22

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #85

R-trees - performance analysis

Observations (cont’ed)
•  overlap: does not seem to matter
•  formula: easily extendible to n dimensions
•  (for even more details: [Pagel +, PODS93],

[Kamel+, CIKM93])

Berndt-Uwe Pagel

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #86

R-trees - performance analysis
Conclusions:
•  splits should try to minimize area and

perimeter
•  ie., we want few, small, square-like parent

MBRs
•  rule of thumb: shoot for queries with q1=q2 =

0.1 (or =0.5 or so).

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #87

R-trees - performance analysis
•  How many disk (=node) accesses we’ll

need for
–  range
–  nn
–  spatial joins

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #88

R-trees - performance analysis
Range queries - how many disk accesses, if we

just now that we have
- N points in n-d space?
A: ?

15-826 C. Faloutsos

23

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #89

R-trees - performance analysis
Range queries - how many disk accesses, if we

just now that we have
- N points in n-d space?
A: can not tell! need to know distribution

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #90

R-trees - performance analysis
What are obvious and/or realistic distributions?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #91

R-trees - performance analysis
What are obvious and/or realistic distributions?
A: uniform
A: Gaussian / mixture of Gaussians
A: self-similar / fractal. Fractal dimension ~

intrinsic dimension

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #92

R-trees - performance analysis
Formulas for range queries and k-nn queries: use

fractal dimension [Kamel+, PODS94], [Korn+
ICDE2000] [Kriegel+, PODS97]

15-826 C. Faloutsos

24

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #93

Indexing - more detailed
outline

•  R-trees
– main idea; file structure
–  algorithms: insertion/split
–  deletion
–  search: range, nn, spatial joins
–  performance analysis
–  variations (packed; hilbert;...)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #94

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?
•  what about other bounding shapes?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #95

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?

–  i.e, defer splits?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #96

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]

Norbert Beckmann
 Hans Peter Kriegel

Ralf Schneider

 Bernhard Seeger

Popular

15-826 C. Faloutsos

25

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #97

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
•  defer splits, by forced-reinsert, i.e.: instead

of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

•  Which ones to re-insert?
•  How many?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #98

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]
•  defer splits, by forced-reinsert, i.e.: instead

of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

•  Which ones to re-insert?
•  How many? A: 30%

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #99

R-trees - variations

Q: Other ways to defer splits?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #100

R-trees - variations

Q: Other ways to defer splits?
A: Push a few keys to the closest sibling node
 (closest = ??)

15-826 C. Faloutsos

26

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #101

R-trees - variations

R*-trees: Also try to minimize area AND
perimeter, in their split.

Performance: higher space utilization; faster
than plain R-trees. One of the most
successful R-tree variants.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #102

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?

– Hilbert R-trees
•  what about other bounding shapes?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #103

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #104

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 terrible for ‘y’

15-826 C. Faloutsos

27

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #105

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 bad for ‘y’

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #106

R-trees - variations
•  what about static datasets (no ins/del/upd)?
•  Q: Best way to pack points?
•  A1: plane-sweep
 great for queries on ‘x’;
 terrible for ‘y’
•  Q: how to improve?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #107

R-trees - variations
•  A: plane-sweep on HILBERT curve!

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #108

R-trees - variations
•  A: plane-sweep on HILBERT curve!
•  (see [Kamel+, VLDB’94]

15-826 C. Faloutsos

28

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #109

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?

– Hilbert R-trees - main idea
–  handling regions
–  performance/discusion

•  what about other bounding shapes?

Details
CMU SCS

15-826 Copyright: C. Faloutsos (2017) #110

R-trees - variations
•  What if we have regions, instead of points?
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles?

Details

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #111

R-trees - variations
•  What if we have regions, instead of points?
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles?
•  A1: h-value of center
•  A2: h-value of 4-d point
 (center, x-radius,
 y-radius)
•  A3: ...

Details
CMU SCS

15-826 Copyright: C. Faloutsos (2017) #112

R-trees - variations
•  What if we have regions, instead of points?
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles?
•  A1: h-value of center
•  A2: h-value of 4-d point
 (center, x-radius,
 y-radius)
•  A3: ...

Details

15-826 C. Faloutsos

29

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #113

R-trees - variations
•  with h-values, we can have deferred splits, 2-

to-3 splits (3-to-4, etc)
•  experimentally: faster than R*-trees
(reference: [Kamel Faloutsos vldb 94])

Details
CMU SCS

15-826 Copyright: C. Faloutsos (2017) #114

R-trees - variations
Guttman’s R-trees sparked much follow-up

work
•  can we do better splits?
•  what about static datasets (no ins/del/upd)?
•  what about other bounding shapes?

Details

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #115

R-trees - variations
•  what about other bounding shapes? (and why?)
•  A1: arbitrary-orientation lines (cell-tree,

[Guenther]
•  A2: P-trees (polygon trees) (MB polygon: 0,

90, 45, 135 degree lines)

Details
CMU SCS

15-826 Copyright: C. Faloutsos (2017) #116

R-trees - variations
•  A3: L-shapes; holes (hB-tree)
•  A4: TV-trees [Lin+, VLDB-Journal 1994]
•  A5: SR-trees [Katayama+, SIGMOD97] (used

in Informedia)

Details

15-826 C. Faloutsos

30

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #117

R-trees - conclusions
•  Popular method; like multi-d B-trees
•  guaranteed utilization; fast search (low dim’s)
•  Used in practice:

– Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805_01/sdo_intr.htm

–  IBM-DB2 spatial extender
– Postgres: create index … using [rtree | gist]
– Sqlite3: www.sqlite.org/rtree.html

•  R* variation is popular

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #118

References

•  Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, Bernhard Seeger: The R*-Tree: An
Efficient and Robust Access Method for Points
and Rectangles. ACM SIGMOD 1990: 322-331

•  Guttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #119

References
•  Jagadish, H. V. (May 23-25, 1990). Linear Clustering of

Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

•  Ibrahim Kamel, Christos Faloutsos: On Packing R-trees,
CIKM, 1993

•  Ibrahim Kamel and Christos Faloutsos,
Hilbert R-tree: An improved R-tree using fractals VLDB,
Santiago, Chile, Sept. 12-15, 1994, pp. 500-509.

•  Lin, K.-I., H. V. Jagadish, et al. (Oct. 1994). “The TV-tree
- An Index Structure for High-dimensional Data.” VLDB
Journal 3: 517-542.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #120

References, cont’d

•  Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

•  Robinson, J. T. (1981). The k-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic Indexes.
Proc. ACM SIGMOD.

•  Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

15-826 C. Faloutsos

31

CMU SCS

15-826 Copyright: C. Faloutsos (2017) #121

Other resources

•  Code, papers, datasets etc:
www.rtreeportal.org/

•  Java applets and more info:
donar.umiacs.umd.edu/quadtree/points/rtrees.html

