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Must-read material 

•  MM-Textbook, Chapter 5.2 
•  Ramakrinshan+Gehrke, Chapter 28.6 
•  Guttman, A. (June 1984). 

R-Trees: A Dynamic Index Structure for Spatial 
Searching. Proc. ACM SIGMOD, Boston, Mass. 
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R-trees – impact: 
•  Popular method; like multi-d B-trees 
•  guaranteed utilization; fast search (low dim’s) 
•  Used in practice: 

– Oracle spatial (R-tree default; z-order, too) 
docs.oracle.com/html/A88805_01/sdo_intr.htm

–  IBM-DB2 spatial extender 
– Postgres:    create index … using [ rtree | gist ]
– Sqlite3:     www.sqlite.org/rtree.html
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 
•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 

–  problem dfn 
–  z-ordering 
– R-trees 
–  ... 

•  text 
•  ... 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #7 

Reminder: problem 
•  Given a collection of geometric objects 

(points, lines, polygons, ...) 
•  organize them on disk, to answer spatial 

queries (range, nn, etc) 
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R-trees 

•  z-ordering: cuts regions to pieces -> dup. 
elim. 

•  how could we avoid that? 
•  Idea: try to extend/merge B-trees and k-d 

trees 
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(first attempt: k-d-B-trees) 

•  [Robinson, 81]: if f is the fanout, split point-
set in f parts; and so on, recursively 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #10 

(first attempt: k-d-B-trees) 

•  But: insertions/deletions are tricky (splits 
may propagate downwards and upwards) 

•   no guarantee on space utilization 
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R-trees 

•  [Guttman 84] Main idea: allow parents to 
overlap! 

Antonin Guttman 
[http://www.baymoon.com/~tg2/] 
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R-trees 

•  [Guttman 84] Main idea: allow parents to 
overlap! 
– => guaranteed 50% utilization 
– => easier insertion/split algorithms. 
–  (only deal with Minimum Bounding Rectangles 

- MBRs) 
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R-trees 

•  eg., w/ fanout 4: group nearby rectangles to 
parent MBRs; each group -> disk page 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 
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R-trees 

•  eg., w/ fanout 4: 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 
F G D E 

H I J A B C 
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R-trees 

•  eg., w/ fanout 4: 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C 
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R-trees - format of nodes 

•  {(MBR; obj-ptr)} for leaf nodes 

P1 P2 P3 P4 

A B C 
x-low; x-high 
y-low; y-high 

... 

obj 
ptr ... 
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R-trees - format of nodes 

•  {(MBR; node-ptr)} for non-leaf nodes 

P1 P2 P3 P4 

A B C 

x-low; x-high 
y-low; y-high 

... 

node 
ptr ... 
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R-trees - range search? 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C 
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R-trees - range search? 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C 
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R-trees - range search 

Observations: 
•  every parent node completely covers its 

‘children’ 
•  a child MBR may be covered by more than 

one parent - it is stored under ONLY ONE 
of them. (ie., no need for dup. elim.) 
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R-trees - range search 

Observations - cont’d 
•  a point query may follow multiple branches. 
•  everything works for any dimensionality 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - insertion 

•  eg.,  rectangle ‘X’ 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C X 
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R-trees - insertion 

•  eg.,  rectangle ‘X’ 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C X 

X 
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R-trees - insertion 

•  eg.,  rectangle ‘Y’ 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C Y 
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R-trees - insertion 

•  eg.,  rectangle ‘Y’: extend suitable parent. 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C Y 
Y 
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R-trees - insertion 

•  eg.,  rectangle ‘Y’: extend suitable parent. 
•  Q: how to measure ‘suitability’? 
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R-trees - insertion 

•  eg.,  rectangle ‘Y’: extend suitable parent. 
•  Q: how to measure ‘suitability’? 
•  A: by increase in area (volume) (more 

details: later, under ‘performance analysis’) 
•  Q: what if there is no room? how to split? 
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R-trees - insertion 

•  eg.,  rectangle ‘W’ 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 

P1 P2 P3 P4 

F G D E 

H I J A B C 

W 

K 

K 
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R-trees - insertion 

•  eg.,  rectangle ‘W’  - focus on ‘P1’ - how 
to split? 

A 
B 

C 

P1 

W 

K 
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R-trees - insertion 

•  eg.,  rectangle ‘W’  - focus on ‘P1’ - how 
to split? 

A 
B 

C 

P1 

W 

K •  (A1: plane sweep,  

until 50% of rectangles) 

•  A2: ‘linear’ split 

•  A3: quadratic split 

•  A4: exponential split 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 

seed1 

seed2 
R 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 
•  Q: how to measure ‘closeness’? 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 
•  Q: how to measure ‘closeness’? 
•  A: by increase of area (volume) 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 

seed1 

seed2 
R 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 

seed1 

seed2 
R 
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R-trees - insertion & split 

•  pick two rectangles as ‘seeds’; 
•  assign each rectangle ‘R’ to the ‘closest’ 

‘seed’ 
•  smart idea: pre-sort rectangles according to 

delta of closeness (ie., schedule easiest 
choices first!) 
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R-trees - insertion - pseudocode 

•  decide which parent to put new rectangle 
into (‘closest’ parent) 

•  if overflow, split to two, using (say,) the 
quadratic split algorithm 
–  propagate the split upwards, if necessary 

•  update the MBRs of the affected parents. 
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R-trees - insertion - 
observations 

•  many more split algorithms exist (next!) 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - deletion 

•  delete rectangle 
•  if underflow 

–  ?? 
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R-trees - deletion 

•  delete rectangle 
•  if underflow 

–  temporarily delete all siblings (!); 
–  delete the parent node and 
–  re-insert them 
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R-trees - deletion 

•  variations: later (eg. Hilbert R-trees w/ 2-
to-1 merge) 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - range search 

pseudocode: 
  check the root 
   for each branch,  
      if its MBR intersects the query rectangle 
            apply range-search (or print out, if this  
                    is a leaf) 
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R-trees - nn search 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 
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R-trees - nn search 

•  Q: How? (find near neighbor; refine...) 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 
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R-trees - nn search 

•  A1: depth-first search; then, range query 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 
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R-trees - nn search 

•  A1: depth-first search; then, range query 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 
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R-trees - nn search 

•  A1: depth-first search; then, range query 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 
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R-trees - nn search 

•  A2: [Roussopoulos+, sigmod95]: 
–  priority queue, with promising MBRs, and their 

best and worst-case distance 
•  main idea: 
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R-trees - nn search 

A 
B 

C 

D 
E 

F 
G 

H 

I 

J 

P1 

P2 

P3 

P4 q 

consider only P2 and P4, for illustration 
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R-trees - nn search 

D 
E 

H 

J 
P2 

P4 q 

worst of P2 

best of P4 
=> P4 is useless 

for 1-nn 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #54 

R-trees - nn search 

D 
E 

H 

J 
P2 

P4 q 

worst of P2 

best of P4 

=> P4 is useless 

for 1-nn 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #55 

R-trees - nn search 

D 
E 

P2 
q 

worst of P2 

•  what is really the worst of, say, P2? 
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R-trees - nn search 

P2 
q 

•  what is really the worst of, say, P2? 
•  A: the smallest of the two red segments! 
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R-trees - nn search 

•  variations: [Hjaltason & Samet] incremental 
nn: 
–  build a priority queue 
–  scan enough of the tree, to make sure you have 

the k nn 
–  to find the (k+1)-th, check the queue, and scan 

some more of the tree 
•  ‘optimal’ (but, may need too much memory) 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - spatial joins 

Spatial joins: find (quickly) all 
        counties         intersecting      lakes 
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R-trees - spatial joins 

Spatial joins: find (quickly) all 
        counties         intersecting      lakes 
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R-trees - spatial joins 

Spatial joins: find (quickly) all 
        counties         intersecting      lakes 
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R-trees - spatial joins 

Assume that they are both organized in R-trees: 
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R-trees - spatial joins 

Assume that they are both organized in R-trees: 
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R-trees - spatial joins 
for each parent P1 of tree T1 
   for each parent P2 of tree T2 
       if their MBRs intersect, 
            process them recursively (ie., check their      
                  children) 
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R-trees - spatial joins 
Improvements - variations: 
- [Seeger+, sigmod 92]: do some pre-filtering; do 

plane-sweeping to avoid N1 * N2 tests for 
intersection 

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees 
(FYI, many more papers on spatial joins, without R-

trees: [Koudas+ Sevcik], e.t.c.) 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - performance analysis 
•  How many disk (=node) accesses we’ll 

need for 
–  range 
–  nn 
–  spatial joins 

•  why does it matter? 
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R-trees - performance analysis 
•  How many disk (=node) accesses we’ll 

need for 
–  range 
–  nn 
–  spatial joins 

•  why does it matter? 
•  A: because we can design split etc 

algorithms accordingly; also, do query-
optimization 
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R-trees - performance analysis 
•  How many disk (=node) accesses we’ll 

need for 
–  range 
–  nn 
–  spatial joins 

•  why does it matter? 
•  A: because we can design split etc 

algorithms accordingly; also, do query-
optimization 
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R-trees - performance analysis 
•  motivating question: on, e.g., split, should 

we try to minimize the area (volume)? the 
perimeter? the overlap? or a weighted 
combination? why? 
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R-trees - performance analysis 
•  How many disk accesses for range queries? 

–  query distribution wrt location? 
–     “          “              wrt size? 
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R-trees - performance analysis 
•  How many disk accesses for range queries? 

–  query distribution wrt location? uniform; (biased) 
–     “          “              wrt size? uniform 
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R-trees - performance analysis 
•  easier case: we know the positions of parent 

MBRs, eg: 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries)? 

P1 

x1 

x2 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

POINT queries)? 

P1 

x1 

x2 

0 1 
0 

1 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

POINT queries)? A: x1*x2 

P1 

x1 

x2 

0 1 
0 

1 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries of size q1xq2)?  

P1 

x1 

x2 

0 1 
0 

1 

q1 

q2 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries of size q1xq2)?  

P1 

x1 

x2 

q1 

q2 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries of size q1xq2)?  

P1 
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R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries of size q1xq2)?  

P1 x2 
q2 

x1 q1 



15-826 C. Faloutsos 

21 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #81 

R-trees - performance analysis 
•  How many times will P1 be retrieved (unif. 

queries of size q1xq2)? A: (x1+q1)*(x2+q2) 

P1 x2 
q2 

x1 q1 
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R-trees - performance analysis 
•  Thus, given a tree with N nodes (i=1, ... N) we 

expect  
    #DiskAccesses(q1,q2) = 
          sum ( xi,1 + q1) * (xi,2 + q2) 
    = sum ( xi,1 * xi,2 )  + 
       q2 * sum ( xi,1 ) + 
        q1* sum ( xi,2 ) 
        q1* q2 * N  
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R-trees - performance analysis 
•  Thus, given a tree with N nodes (i=1, ... N) we 

expect  
    #DiskAccesses(q1,q2) = 
          sum ( xi,1 + q1) * (xi,2 + q2) 
    = sum ( xi,1 * xi,2 )  + 
       q2 * sum ( xi,1 ) + 
        q1* sum ( xi,2 ) 
        q1* q2 * N  

‘volume’ 

surface area 

 count 
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R-trees - performance analysis 
Observations: 
•  for point queries: only volume matters 
•  for horizontal-line queries: (q2=0): vertical 

length matters 
•  for large queries (q1, q2 >> 0): the count N 

matters 



15-826 C. Faloutsos 

22 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #85 

R-trees - performance analysis 

Observations (cont’ed) 
•  overlap: does not seem to matter 
•  formula: easily extendible to n dimensions 
•  (for even more details: [Pagel +, PODS93],  

[Kamel+, CIKM93]) 
 

Berndt-Uwe Pagel 
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R-trees - performance analysis 
Conclusions: 
•  splits should try to minimize area and 

perimeter 
•  ie., we want few, small, square-like parent 

MBRs 
•  rule of thumb: shoot for queries with q1=q2 = 

0.1 (or =0.5 or so). 
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R-trees - performance analysis 
•  How many disk (=node) accesses we’ll 

need for 
–  range 
–  nn 
–  spatial joins 
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R-trees - performance analysis 
Range queries - how many disk accesses, if we 

just now that we have 
- N points in n-d space? 
A: ? 
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R-trees - performance analysis 
Range queries - how many disk accesses, if we 

just now that we have 
- N points in n-d space? 
A: can not tell! need to know distribution 
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R-trees - performance analysis 
What are obvious and/or realistic distributions? 
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R-trees - performance analysis 
What are obvious and/or realistic distributions? 
A: uniform 
A: Gaussian / mixture of Gaussians 
A: self-similar / fractal. Fractal dimension ~ 

intrinsic dimension 
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R-trees - performance analysis 
Formulas for range queries and k-nn queries: use 

fractal dimension [Kamel+, PODS94], [Korn+ 
ICDE2000] [Kriegel+, PODS97] 
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Indexing - more detailed 
outline 

•  R-trees 
– main idea; file structure 
–  algorithms: insertion/split 
–  deletion 
–  search: range, nn, spatial joins 
–  performance analysis 
–  variations (packed; hilbert;...) 
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R-trees - variations 
Guttman’s R-trees sparked much follow-up 

work 
•  can we do better splits? 
•  what about static datasets (no ins/del/upd)? 
•  what about other bounding shapes? 
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R-trees - variations 
Guttman’s R-trees sparked much follow-up 

work 
•  can we do better splits?  

–  i.e, defer splits?  
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R-trees - variations 

A: R*-trees [Beckmann+, SIGMOD90] 

Norbert Beckmann  
   Hans Peter Kriegel  

Ralf Schneider  

   Bernhard Seeger  

Popular 
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R-trees - variations 

A: R*-trees [Beckmann+, SIGMOD90] 
•  defer splits, by forced-reinsert, i.e.: instead 

of splitting, temporarily delete some entries, 
shrink overflowing MBR, and re-insert 
those entries 

•  Which ones to re-insert? 
•  How many? 
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R-trees - variations 

A: R*-trees [Beckmann+, SIGMOD90] 
•  defer splits, by forced-reinsert, i.e.: instead 

of splitting, temporarily delete some entries, 
shrink overflowing MBR, and re-insert 
those entries 

•  Which ones to re-insert? 
•  How many? A: 30% 
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R-trees - variations 

Q: Other ways to defer splits? 
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R-trees - variations 

Q: Other ways to defer splits? 
A: Push a few keys to the closest sibling node 
    (closest = ??) 
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R-trees - variations 

R*-trees: Also try to minimize area AND 
perimeter, in their split. 

Performance: higher space utilization; faster 
than plain R-trees. One of the most 
successful R-tree variants. 

CMU SCS 

15-826 Copyright: C. Faloutsos (2017) #102 

R-trees - variations 
Guttman’s R-trees sparked much follow-up 

work 
•  can we do better splits? 
•  what about static datasets (no ins/del/upd)? 

– Hilbert R-trees 
•  what about other bounding shapes? 
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R-trees - variations 
•  what about static datasets (no ins/del/upd)? 
•  Q: Best way to pack points? 
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R-trees - variations 
•  what about static datasets (no ins/del/upd)? 
•  Q: Best way to pack points? 
•  A1: plane-sweep 
   great for queries on ‘x’; 
   terrible for ‘y’ 
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R-trees - variations 
•  what about static datasets (no ins/del/upd)? 
•  Q: Best way to pack points? 
•  A1: plane-sweep 
   great for queries on ‘x’; 
   bad for ‘y’ 
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R-trees - variations 
•  what about static datasets (no ins/del/upd)? 
•  Q: Best way to pack points? 
•  A1: plane-sweep 
   great for queries on ‘x’; 
   terrible for ‘y’ 
•  Q: how to improve? 
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R-trees - variations 
•  A: plane-sweep on HILBERT curve! 
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R-trees - variations 
•  A: plane-sweep on HILBERT curve! 
•  (see [Kamel+, VLDB’94] 
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R-trees - variations 
Guttman’s R-trees sparked much follow-up 

work 
•  can we do better splits? 
•  what about static datasets (no ins/del/upd)? 

– Hilbert R-trees - main idea 
–  handling regions 
–  performance/discusion 

•  what about other bounding shapes? 

Details 
CMU SCS 
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R-trees - variations 
•  What if we have regions, instead of points? 
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles? 

Details 
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R-trees - variations 
•  What if we have regions, instead of points? 
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles? 
•  A1: h-value of center 
•  A2: h-value of 4-d point 
          (center, x-radius, 
            y-radius) 
•  A3: ... 

Details 
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R-trees - variations 
•  What if we have regions, instead of points? 
•  I.e., how to impose a linear ordering (‘h-

value’) on rectangles? 
•  A1: h-value of center 
•  A2: h-value of 4-d point 
          (center, x-radius, 
            y-radius) 
•  A3: ... 

Details 
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R-trees - variations 
•  with h-values, we can have deferred splits, 2-

to-3 splits (3-to-4, etc) 
•  experimentally: faster than R*-trees 
(reference: [Kamel Faloutsos vldb 94]) 

Details 
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R-trees - variations 
Guttman’s R-trees sparked much follow-up 

work 
•  can we do better splits? 
•  what about static datasets (no ins/del/upd)? 
•  what about other bounding shapes? 

Details 
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R-trees - variations 
•  what about other bounding shapes? (and why?) 
•  A1: arbitrary-orientation lines (cell-tree, 

[Guenther] 
•  A2: P-trees (polygon trees) (MB polygon: 0, 

90, 45, 135 degree lines) 

Details 
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R-trees - variations 
•  A3: L-shapes; holes (hB-tree) 
•  A4: TV-trees [Lin+, VLDB-Journal 1994] 
•  A5: SR-trees [Katayama+, SIGMOD97] (used 

in Informedia) 

Details 
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R-trees - conclusions 
•  Popular method; like multi-d B-trees 
•  guaranteed utilization; fast search (low dim’s) 
•  Used in practice: 

– Oracle spatial (R-tree default; z-order, too) 
docs.oracle.com/html/A88805_01/sdo_intr.htm

–  IBM-DB2 spatial extender 
– Postgres:    create index … using [ rtree | gist ]
– Sqlite3:     www.sqlite.org/rtree.html

•  R* variation is popular 
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Other resources 

•  Code, papers, datasets etc: 
www.rtreeportal.org/ 

•  Java applets and more info: 
donar.umiacs.umd.edu/quadtree/points/rtrees.html 


