15-826

g CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture #6: Spatial Access Methods
Part III: R-trees
C. Faloutsos

Must-read material

* MM-Textbook, Chapter 5.2

» Ramakrinshan+Gehrke, Chapter 28.6

* Guttman, A. (June 1984).
R-Trees: A Dynamic Index Structure for Spatial
Searching. Proc. ACM SIGMOD, Boston, Mass.

15-826 Copyright: C. Faloutsos (2017) #2

g CMU SCS

/- R-trees — impact: \

* Popular method; like multi-d B-trees
» guaranteed utilization; fast search (low dim’ s)
* Used in practice:

— Oracle spatial (R-tree default; z-order, too)
docs.oracle.com/html/A88805_01/sdo_intr.htm

— IBM-DB?2 spatial extender
*POSth‘eSZ create index .. using [rtree | gist]

— Sqlite3: www.sglite.org/rtree.html

\5826 Copyright: C. Faloutsos (2017) /

g MU SCS
Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

* Indexing - similarity search
» Data Mining

15-826 Copyright: C. Faloutsos (2017) #4

C. Faloutsos

15-826

g CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing
* spatial access methods

— problem dfn
— z-ordering

— R-trees

* text

[]
15-826 Copyright: C. Faloutsos (2017)

#5

g CMU SCS
Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017)

#6

Reminder: problem

 Given a collection of geometric objects
(points, lines, polygons, ...)

* organize them on disk, to answer spatial
queries (range, nn, etc)

15-826 Copyright: C. Faloutsos (2017)

#7

% CMU SCS

R-trees

* z-ordering: cuts regions to pieces -> dup.
elim.

* how could we avoid that?

* Idea: try to extend/merge B-trees and k-d
trees

15-826 Copyright: C. Faloutsos (2017)

#8

C. Faloutsos

15-826

g MU SCS
(first attempt: k-d-B-trees)

* [Robinson, 81]: if f'is the fanout, split point-
set in fparts; and so on, recursively

% MU SCS
(first attempt: k-d-B-trees)

» But: insertions/deletions are tricky (splits
may propagate downwards and upwards)

* no guarantee on space utilization

* e ol e
° ", °
L] L) ° o o
e © °
LR Vol
15-826 Copyright: C. Faloutsos (2017) #9
g CMU SCS

* [Guttman 84] Main idea: allow parents to
overlap!

Antonin Guttman
[http://www.baymoon.com/~tg2/]

15-826 Copyright: C. Faloutsos (2017) #11

° .S)
o °
L] e o ° o o
° L] L] ° °
o i PG
15-826 Copyright: C. Faloutsos (2017) #10
g CMU SCS

* [Guttman 84] Main idea: allow parents to
overlap!
— => guaranteed 50% utilization
— => easier insertion/split algorithms.
— (only deal with Minimum Bounding Rectangles

- MBRs)
< |

15-826 Copyright: C. Faloutsos (2017) #12

C. Faloutsos

15-826

g CMU SCS

R-trees

* eg., w/ fanout 4: group nearby rectangles to
parent MBRs; each group -> disk page

I
JacO O
b F [
EED
15-826 Copyright: C. Faloutsos (2017) #13
R-trees

* eg., w/ fanout 4:

Pl P3 I
B[] F -

ED a1 || faTerer] | farr
P[D | (ol e[1] el]
15-826 Copyright: C. Faloutsos (2017) #15

g CMU SCS
R-trees

* eg., w/ fanout 4:

P1 P3

I
aclll [Cogi
B[] F H
V| Lalslel | [nlafu] |
ED P4
P2[D_| (ol e[1] (¢]
15-826 Copyright: C. Faloutsos (2017) #14

g CMU SCS
R-trees - format of nodes

* {(MBR; obj-ptr)} for leaf nodes

x-low; x-high b
y-low; y-high OtJ "
Pt /

15-826 Copyright: C. Faloutsos (2017)

#16

C. Faloutsos

15-826

g CMU SCS
R-trees - format of nodes

* {(MBR; node-ptr)} for non-leaf nodes

x-low; x-high
y-low; y-high

node
ptr

15-826 Copyright: C. Faloutsos (2017) #17

g CMU SCS

R-trees - range search?

_ R OPEE
= P1| P2| P3| P4
ACL] |DG:[D
B[] P
ED oal1 || o] | farm
P2[D | lel T [elel T
15-826 Copyright: C. Faloutsos (2017) #18

% CMU SCS

R-trees - range search?

_ P rm
= P1| P2| P3| P4
A CL] |DG:[D) l/
B[] FooH
ED a1 || faTerer] | farr
P2[D_ o[el 7] [elel T
15-826 Copyright: C. Faloutsos (2017) #19

R-trees - range search

Observations:

* every parent node completely covers its
‘children’

* achild MBR may be covered by more than
one parent - it is stored under ONLY ONE
of them. (ie., no need for dup. elim.)

15-826 Copyright: C. Faloutsos (2017) #20

C. Faloutsos

15-826

R-trees - range search

Observations - cont’ d

* a point query may follow multiple branches.
+ everything works for any dimensionality

15-826 Copyright: C. Faloutsos (2017) #21

g CMU SCS
Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #22

R-trees - insertion

* eg., rectangle ‘X’

Pl P3|

en B Ersin

B[] F H
-XED a1 || faTerer] | farr
P2[p | e 1] Flel]
- oo .

R-trees - insertion

* eg., rectangle ‘X’

Pl P3

1

Acll Lol

B[] F H
-XED oalo | famsrer| | e
P2[p | e] [¥[al]
. e .

C. Faloutsos

15-826

R-trees - insertion

* eg., rectangle Y’

P1 P3

Aclll gt
B L

|~

. ED P4ﬂ (alele[| | [a[io]
PZL@ (ol e[1] el]
15-826 Copyright: C. Faloutsos (2017) #25

g CMU SCS

R-trees - insertion

* eg., rectangle ‘Y’ : extend suitable parent.

P1 P3

I
aclll [Cogi
F |'H

. ED o |3 1 CATsIer] | [l
PL@ o[el]] [ela[T

15-826 Copyright: C. Faloutsos (2017) #26

R-trees - insertion

s eg., rectangle 'Y : extend suitable parent.
 Q: how to measure ‘suitability’ ?

15-826 Copyright: C. Faloutsos (2017) #27

g CMU SCS

R-trees - insertion

* eg., rectangle ‘Y : extend suitable parent.
 Q: how to measure ‘suitability’ ?

* A: by increase in area (volume) (more
details: later, under ‘performance analysis’)

* Q: what if there is no room? how to split?

15-826 Copyright: C. Faloutsos (2017) #28

C. Faloutsos

15-826

g CMU SCS

R-trees - insertion

* eg., rectangle ‘W’
Pl P3 I
= 0 TH

B[]
ED ol farerer| | G
P2[p | el 1] [Flel T

g CMU SCS

R-trees - insertion

s eg., rectangle ‘W’ - focus on ‘P1’ - how

to split?
I K

Aucg w
B

15-826 Copyright: C. Faloutsos (2017) #30

g CMU SCS

R-trees - insertion

e eg., rectangle ‘W’ - focus on ‘P1’ - how
- to split?

K * (A1: plane sweep,
l AuCD until 50% of rectangles)
i m| W
m « A2: ‘linear’ split
mmm + A3: quadratic split
» A4: exponential split
15-826 Copyright: C. Faloutsos (2017) #31

g CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

* assign each rectangle ‘R’ to the ‘closest’
‘seed’

D U E I seed2
R L]
seed|l I D

15-826 Copyright: C. Faloutsos (2017) #32

C. Faloutsos

15-826

g CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

* assign each rectangle ‘R’ to the ‘closest’
‘seed’

» Q: how to measure ‘closeness’ ?

15-826 Copyright: C. Faloutsos (2017) #33

g CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

* assign each rectangle ‘R’ to the ‘closest’
‘seed’

+ Q: how to measure ‘closeness’ ?
* A: by increase of area (volume)

15-826 Copyright: C. Faloutsos (2017) #34

% CMU SCS
R-trees - insertion & split

* pick two rectangles as ‘seeds’;

« assign each rectangle ‘R’ to the ‘closest’
‘seed’

DD E . seed?2
| v

seed|l I ,,,,,,,,,,,,,,, j

15-826 Copyright: C. Faloutsos (2017) #35

g CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;
* assign each rectangle ‘R’ to the ‘closest’

‘seed’
|

. seed2
R

[l
LR =
seed|l I D

15-826 Copyright: C. Faloutsos (2017) #36

C. Faloutsos

15-826

g CMU SCS

R-trees - insertion & split

* pick two rectangles as ‘seeds’;

* assign each rectangle ‘R’ to the ‘closest’
‘seed’

» smart idea: pre-sort rectangles according to
delta of closeness (ie., schedule easiest
choices first!)

15-826 Copyright: C. Faloutsos (2017) #37

g CMU SCS

R-trees - insertion - pseudocode

* decide which parent to put new rectangle
into (‘closest’ parent)

« if overflow, split to two, using (say,) the
quadratic split algorithm
— propagate the split upwards, if necessary

 update the MBRs of the affected parents.

15-826 Copyright: C. Faloutsos (2017) #38

R-trees - insertion -
observations

* many more split algorithms exist (next!)

15-826 Copyright: C. Faloutsos (2017) #39

% CMU SCS

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #40

C. Faloutsos

10

15-826

g CMU SCS

R-trees - deletion
* delete rectangle

* if underflow
- 7?

15-826 Copyright: C. Faloutsos (2017) #41

g CMU SCS

R-trees - deletion

* delete rectangle

* if underflow
— temporarily delete all siblings (!);
— delete the parent node and
— re-insert them

15-826 Copyright: C. Faloutsos (2017) #42

% CMU SCS
R-trees - deletion

* variations: later (eg. Hilbert R-trees w/ 2-
to-1 merge)

15-826 Copyright: C. Faloutsos (2017) #43

g CMU SCS

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #44

C. Faloutsos

11

15-826

R-trees - range search

pseudocode:
check the root
for each branch,
if its MBR intersects the query rectangle
apply range-search (or print out, if this
is a leaf)

15-826 Copyright: C. Faloutsos (2017) #45

g CMU SCS

R-trees - nn search

P1 P3

I
aclll Il
F |'H

B[]
7
) ED P4
1 P2|D

15-826 Copyright: C. Faloutsos (2017)

#46

R-trees - nn search

* Q: How? (find near neighbor; refine...)
P1 P3

I
aclll g
F|'H

B[]
7
) ED P4
1 P2|D

15-826 Copyright: C. Faloutsos (2017) #47

R-trees - nn search

* Al: depth-first search; then, range query
P1 P3

I
aclll Il
F|'H

B[]
7
) ED P4
1 P2|D

15-826 Copyright: C. Faloutsos (2017)

#48

C. Faloutsos

12

15-826

R-trees - nn search

* Al: depth-first search; then, range query
P1 P3

I
aclll g
F|'H

B[] r
q) ED P4ﬂ

P2[D |

15-826 Copyright: C. Faloutsos (2017) #49

R-trees - nn search

* Al: depth-first search; then, range query
P1 P3

I
aclll Il
F |'H

: D
J
E P4
! \'sz

15-826 Copyright: C. Faloutsos (2017)

#50

R-trees - nn search
* A2: [Roussopoulos+, sigmod95]:

— priority queue, with promising MBRs, and their
best and worst-case distance

* main idea:

15-826 Copyright: C. Faloutsos (2017) #51

g CMU SCS

R-trees - nn search

consider only P2 and P4, for illustration
P1 P3

I
aclll Il
F|'H

B[]
. o E[‘ P4 |!

15-826 Copyright: C. Faloutsos (2017)

#52

C. Faloutsos

13

15-826

% CMU SCS

R-trees - nn search

g CMU SCS

R-trees - nn search
best of P4

=> P4 is useless

for 1-nn

worst of P2

15-826 Copyright: C. Faloutsos (2017) #54

best of P4)
=> P4 is useless
worst of P2 for I-nn
¢——
15-826 Copyright: C. Faloutsos (2017) #53
R-trees - nn search
* what is really the worst of, say, P2?
worst of P2
15-826 Copyright: C. Faloutsos (2017) #55

% CMU SCS

R-trees - nn search

» what is really the worst of, say, P2?
* A: the smallest of the two red segments!

T P2

15-826 Copyright: C. Faloutsos (2017) #56

C. Faloutsos

14

15-826

g CMU SCS

R-trees - nn search

* variations: [Hjaltason & Samet] incremental
nn:
— build a priority queue

— scan enough of the tree, to make sure you have
the £ nn

— to find the (k+1)-th, check the queue, and scan
some more of the tree

 ‘optimal’ (but, may need too much memory)

15-826 Copyright: C. Faloutsos (2017) #57

g CMU SCS

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #58

g CMU SCS
R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

0
a Q@

15-826 Copyright: C. Faloutsos (2017) #59

% CMU SCS
R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

£
a Q@

15-826 Copyright: C. Faloutsos (2017) #60

C. Faloutsos

15

15-826

g CMU SCS
R-trees - spatial joins

Spatial joins: find (quickly) all
counties intersecting lakes

a

15-826 Copyright: C. Faloutsos (2017) #61

g CMU SCS

R-trees - spatial joins

Assume that they are both organized in R-trees:

1
(] a

—

15-826 Copyright: C. Faloutsos (2017) #62

g CMU SCS
R-trees - spatial joins

Assume that they are both organized in R-trees:

i
|

|:||E||:|

15-826 Copyright: C. Faloutsos (2017) #63

g CMU SCS
R-trees - spatial joins

for each parent P1 of tree T1
for each parent P2 of tree T2
if their MBRs intersect,
process them recursively (ie., check their
children)

15-826 Copyright: C. Faloutsos (2017) #64

C. Faloutsos

16

15-826

g CMU SCS
R-trees - spatial joins

Improvements - variations:

- [Seeger+, sigmod 92]: do some pre-filtering; do
plane-sweeping to avoid N/ * N2 tests for
intersection

- [Lo & Ravishankar, sigmod 94]: ‘seeded’ R-trees

(FYI, many more papers on spatial joins, without R-
trees: [Koudas+ Sevcik], e.t.c.)

15-826 Copyright: C. Faloutsos (2017) #65

g CMU SCS

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #66

R-trees - performance analysis

« How many disk (=node) accesses we’ 11
need for

— range
—nn
— spatial joins

* why does it matter?

15-826 Copyright: C. Faloutsos (2017) #67

% CMU SCS

R-trees - performance analysis

» How many disk (=node) accesses we’ 1l
need for
— range
—nn
— spatial joins

* why does it matter?

* A: because we can design split etc
algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2017) #68

C. Faloutsos

17

15-826

g CMU SCS

R-trees - performance analysis

« How many disk (=node) accesses we’ 11
need for
q — range
— nn
— spatial joins
» why does it matter?

* A: because we can design split etc
algorithms accordingly; also, do query-
optimization

15-826 Copyright: C. Faloutsos (2017) #69

g CMU SCS

R-trees - performance analysis

* motivating question: on, e.g., split, should
we try to minimize the area (volume)? the
perimeter? the overlap? or a weighted
combination? why?

15-826 Copyright: C. Faloutsos (2017) #70

R-trees - performance analysis

* How many disk accesses for range queries?
— query distribution wrt location?

“ “

- wrt size?

15-826 Copyright: C. Faloutsos (2017) #71

g CMU SCS

R-trees - performance analysis

* How many disk accesses for range queries?
— query distribution wrt location? uniform; (biased)

““ b

— wrt size? uniform

15-826 Copyright: C. Faloutsos (2017) #72

C. Faloutsos

18

15-826

g CMU SCS

R-trees - performance analysis

* casier case: we know the positions of parent

MBRs, eg:
o
15-826 Copyright: C. Faloutsos (2017) #73

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries)?
x1

Pl | |tx

15-826 Copyright: C. Faloutsos (2017) #74

R-trees - performance analysis

* How many times will P1 be retrieved (unif.

POINT queries)?
x1
S| | [tx2
O
0 e
15-826 Copyright: C. Faloutsos (2017) #75

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
POINT queries)? A: x1*x2

x1

Pl | 1 x2

15-826 Copyright: C. Faloutsos (2017) #16

C. Faloutsos

19

15-826

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

x1
1
Pl ST R R)
2 [[°]
O —
0 ql
15-826 Copyright: C. Faloutsos (2017) #77

% CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?
x1

ql

15-826 Copyright: C. Faloutsos (2017) #78

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

15-826 Copyright: C. Faloutsos (2017) #79

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)?

Pl t x2

qu

x1 ql
A
15-826 Copyright: C. Faloutsos (2017) #80

C. Faloutsos

20

15-826

g CMU SCS

R-trees - performance analysis

* How many times will P1 be retrieved (unif.
queries of size q1xq2)? A: (x1+ql)*(x2+q2)

Pl t x2

I

x1 ql

o d

15-826 Copyright: C. Faloutsos (2017) #81

g CMU SCS

R-trees - performance analysis

* Thus, given a tree with N nodes (i=1, ... N) we
expect

#DiskAccesses(ql,q2) =
sum (X, +ql) * (x;, + q2)
=sum (x;; *Xj,) +
q2 * sum (x;;) +
qI* sum (x;,)
ql*q2 *N

15-826 Copyright: C. Faloutsos (2017) #82

g CMU SCS

R-trees - performance analysis

* Thus, given a tree with N nodes (i=1, ... N) we
expect

#DiskAccesses(ql,q2) =
sum (x;; +ql) * (x;, + q2)
=sum (x,, ¥ X;,) + —— ‘volume’
q2 * sum (x;;) + — = surface area
ql* sum (x;,) —
ql* g2 *N — count

15-826 Copyright: C. Faloutsos (2017) #83

% CMU SCS

R-trees - performance analysis

Observations:
« for point queries: only volume matters

+ for horizontal-line queries: (q2=0): vertical
length matters

« for large queries (ql, g2 >> 0): the count N
matters

15-826 Copyright: C. Faloutsos (2017) #34

C. Faloutsos

21

15-826

g CMU SCS

R-trees - performance analysis

Observations (cont’ ed)
 overlap: does not seem to matter
 formula: easily extendible to n dimensions

* (for even more details: [Pagel +, PODS93],
[Kamel+, CIKM93])

3
¥{ Berndt-Uwe Pagel

15-826 Copyright: C. Faloutsos (2017) #85

g CMU SCS

R-trees - performance analysis

Conclusions:

* splits should try to minimize area and
perimeter

* ie., we want few, small, square-like parent
MBRs

* rule of thumb: shoot for queries with q1=q2 =
0.1 (or =0.5 or s0).

15-826 Copyright: C. Faloutsos (2017) #36

% CMU SCS

R-trees - performance analysis

« How many disk (=node) accesses we’ 11
need for

q — range

—nn
— spatial joins

15-826 Copyright: C. Faloutsos (2017) #87

g CMU SCS

R-trees - performance analysis

Range queries - how many disk accesses, if we
just now that we have

- N points in n-d space?
A:?

15-826 Copyright: C. Faloutsos (2017) #88

C. Faloutsos

22

15-826

% CMU SCS

R-trees - performance analysis

Range queries - how many disk accesses, if we
just now that we have

- N points in n-d space?
A: can not tell! need to know distribution

15-826 Copyright: C. Faloutsos (2017) #89

g CMU SCS

R-trees - performance analysis

What are obvious and/or realistic distributions?

15-826 Copyright: C. Faloutsos (2017) #90

% CMU SCS

R-trees - performance analysis

What are obvious and/or realistic distributions?
A uniform
A: Gaussian / mixture of Gaussians

A: self-similar / fractal. Fractal dimension ~
intrinsic dimension

15-826 Copyright: C. Faloutsos (2017) #91

g CMU SCS$

R-trees - performance analysis

Formulas for range queries and k-nn queries: use
fractal dimension [Kamel+, PODS94], [Korn+
ICDE2000] [Kriegel+, PODS97]

15-826 Copyright: C. Faloutsos (2017) #92

C. Faloutsos

23

15-826

g CMU SCS

Indexing - more detailed

outline
* R-trees
— main idea; file structure
— algorithms: insertion/split
— deletion
— search: range, nn, spatial joins
— performance analysis
— variations (packed; hilbert;...)

15-826 Copyright: C. Faloutsos (2017) #93

g CMU SCS

R-trees - variations
Guttman’ s R-trees sparked much follow-up
work
) can we do better splits?
« what about static datasets (no ins/del/upd)?
» what about other bounding shapes?

15-826 Copyright: C. Faloutsos (2017) #94

g CMU SCS

R-trees - variations

Guttman’ s R-trees sparked much follow-up
work

 can we do better splits?
— i.e, defer splits?

15-826 Copyright: C. Faloutsos (2017) #95

g CMU SCS

- R-trees - variations
Popular

A: R*-trees [Beckmann+, SIGMOD90]

Norbert Beckmann (
Hans Peter Kriegel — ﬁ
Ralf Schneider)

Bernhard Seeger —

15-826 Copyright: C. Faloutsos (2017) #96

C. Faloutsos

24

15-826

% CMU SCS

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]

* defer splits, by forced-reinsert, i.e.: instead
of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

* Which ones to re-insert?

* How many?

15-826 Copyright: C. Faloutsos (2017) #97

g CMU SCS

R-trees - variations

A: R*-trees [Beckmann+, SIGMOD90]

* defer splits, by forced-reinsert, i.e.: instead
of splitting, temporarily delete some entries,
shrink overflowing MBR, and re-insert
those entries

* Which ones to re-insert? =
« How many? A: 30% |

15-826 Copyright: C. Faloutsos (2017) #98

R-trees - variations

Q: Other ways to defer splits?

15-826 Copyright: C. Faloutsos (2017) #99

g CMU SCS$

R-trees - variations
Q: Other ways to defer splits?

A: Push a few keys to the closest sibling node
(closest = ?7?)

15-826 Copyright: C. Faloutsos (2017) #100

C. Faloutsos

25

15-826

% CMU SCS

R-trees - variations

R*-trees: Also try to minimize area AND
perimeter, in their split.

Performance: higher space utilization; faster
than plain R-trees. One of the most
successful R-tree variants.

15-826 Copyright: C. Faloutsos (2017) #101

g CMU SCS

R-trees - variations
Guttman’ s R-trees sparked much follow-up
work
 can we do better splits?

ﬂ what about static datasets (no ins/del/upd)?
— Hilbert R-trees

» what about other bounding shapes?

15-826 Copyright: C. Faloutsos (2017) #102

% CMU SCS

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?

15-826 Copyright: C. Faloutsos (2017) #103

g CMU SCS$

R-trees - variations
» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
* Al: plane-sweep

great for queries on ‘x’;
terrible for ‘y’

15-826 Copyright: C. Faloutsos (2017) #104

C. Faloutsos

26

g CMU SCS

R-trees - variations
» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
* Al: plane-sweep

great for queries on ‘X’ ;
[’
bad for 'y
15-826 Copyright: C. Faloutsos (2017)

#105

g CMU SCS

R-trees - variations

» what about static datasets (no ins/del/upd)?
* Q: Best way to pack points?
* Al: plane-sweep
great for queries on ‘X’ ;
terrible for ‘y’
* Q: how to improve?

15-826 Copyright: C. Faloutsos (2017) #106

% CMU SCS

R-trees - variations
* A: plane-sweep on HILBERT curve!

o

15-826 Copyright: C. Faloutsos (2017)

#107

C. Faloutsos

g CMU SCS

R-trees - variations

* A: plane-sweep on HILBERT curve!
* (see [Kamel+, VLDB’ 94]

15-826 Copyright: C. Faloutsos (2017) #108

27

15-826

g CMU SCS

R-trees - variations

Guttman’ s R-trees sparked much follow-up
work

 can we do better splits?

» what about static datasets (no ins/del/upd)?
— Hilbert R-trees - main idea

‘ — handling regions
— performance/discusion

» what about other bounding shapes?

15-826 Copyright: C. Faloutsos (2017)

e

#109

g CMU SCS

R-trees - variations

* What if we have regions, instead of points?
* Le., how to impose a linear ordering (‘h-

e

value’) on rectangles?
fj | &
—
: [—— |

15-826 Copyright: C. Faloutsos (2017)

#110

g CMU SCS

R-trees - variations

What if we have regions, instead of points?
* Le., how to impose a linear ordering (‘h-

e

* Al: h-value of center
A2: h-value of 4-d point
(center, x-radius,

value’) on rectangles?
-
1 | &

—l

y-radius)

e A3: ...

15-826 Copyright: C. Faloutsos (2017)

#111

% CMU SCS

R-trees - variations

What if we have regions, instead of points?
I.e., how to impose a linear ordering (‘h-

e

A2: h-value of 4-d point
(center, x-radius,
y-radius)

value’) on rectangles?
-
H | &

Al: h-value of center
—

e A3: ...

15-826 Copyright: C. Faloutsos (2017)

#112

C. Faloutsos

28

15-826

g CMU SCS

e

 with h-values, we can have deferred splits, 2-
to-3 splits (3-to-4, etc)

 experimentally: faster than R*-trees

(reference: [Kamel Faloutsos vidb 94])

R-trees - variations

15-826 Copyright: C. Faloutsos (2017) #113

g CMU SCS

e

» what about other bounding shapes? (and why?)

* Al: arbitrary-orientation lines (cell-tree,
[Guenther]

* A2: P-trees (polygon trees) (MB polygon: 0,
90, 45, 135 degree lines)

R-trees - variations

15-826 Copyright: C. Faloutsos (2017) #115

g CMU SCS

e

Guttman’ s R-trees sparked much follow-up
work

R-trees - variations

 can we do better splits?
« what about static datasets (no ins/del/upd)?
ﬂ what about other bounding shapes?

g CMU SCS

15-826 Copyright: C. Faloutsos (2017) #114
R-trees - variations

» A3: L-shapes; holes (hB-tree)

* A4: TV-trees [Lin+, VLDB-Journal 1994]

» AS5: SR-trees [Katayama+, SIGMOD97] (used
in Informedia)

]

N_

N————

15-826 Copyright: C. Faloutsos (2017) #116

C. Faloutsos

29

15-826

g CMU SCS

R-trees - conclusions

* Popular method; like multi-d B-trees
» guaranteed utilization; fast search (low dim’ s)
* Used in practice:

— Oracle spatial (R-tree default; z-order, t0o0)
docs.oracle.com/html/A88805_01/sdo_intr.htm

— IBM-DB?2 spatial extender
—Postgres: create index .. using [rtree | gist]

— thte3 www.sglite.org/rtree.html

* R* variation is popular

15-826 Copyright: C. Faloutsos (2017) #117

g CMU SCS

References

* Norbert Beckmann, Hans-Peter Kriegel, Ralf
Schneider, Bernhard Seeger: The R*-Tree: An
Efficient and Robust Access Method for Points
and Rectangles. ACM SIGMOD 1990: 322-331

* Guttman, A. (June 1984). R-Trees: A Dynamic
Index Structure for Spatial Searching. Proc. ACM
SIGMOD, Boston, Mass.

15-826 Copyright: C. Faloutsos (2017) #118

g CMU SCS

References

» Jagadish, H. V. (May 23-25, 1990). Linear Clustering of
Objects with Multiple Attributes. ACM SIGMOD Conf.,
Atlantic City, NJ.

 Ibrahim Kamel, Christos Faloutsos: On Packing R-trees,
CIKM, 1993

* Ibrahim Kamel and Christos Faloutsos,
Hilbert R-tree: An improved R-tree using fractals VLDB,
Santiago, Chile, Sept. 12-15, 1994, pp. 500-509.

 Lin, K.-I, H. V. Jagadish, et al. (Oct. 1994). “The TV-tree
- An Index Structure for High-dimensional Data.” VLDB
Journal 3: 517-542.

15-826 Copyright: C. Faloutsos (2017) #119

% CMU SCS

References, cont’ d

» Pagel, B., H. Six, et al. (May 1993). Towards an Analysis
of Range Query Performance. Proc. of ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS), Washington, D.C.

* Robinson, J. T. (1981). The k-D-B-Tree: A Search
Structure for Large Multidimensional Dynamic Indexes.
Proc. ACM SIGMOD.

* Roussopoulos, N., S. Kelley, et al. (May 1995). Nearest
Neighbor Queries. Proc. of ACM-SIGMOD, San Jose, CA.

15-826 Copyright: C. Faloutsos (2017) #120

C. Faloutsos

30

15-826 C. Faloutsos

g CMU SCS

Other resources

* Code, papers, datasets etc:
www.rtreeportal.org/

* Java applets and more info:

donar.umiacs.umd.edu/quadtree/points/rtrees.html

15-826 Copyright: C. Faloutsos (2017) #121

31

