C. Faloutsos

g CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture#5: Multi-key and
Spatial Access Methods — II — z-ordering
C. Faloutsos

g CMU SCS

Must-read material

* MM-Textbook, Chapter 5.1
* Ramakrinshan+Gehrke, Chapter 28.4

 J. Orenstein,
Spatial Query Processing in an Object-Oriented
Database System, Proc. ACM SIGMOD, May,
1986, pp. 326-336, Washington D.C.

15-826 Copyright: C. Faloutsos (2017) 2

g MU SCS
Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

# ¢ Indexing - similarity search
* Data Mining

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS

Indexing - Detailed outline

* primary key indexing
 secondary key / multi-key indexing
#' spatial access methods
— problem dfn
— z-ordering
— R-trees
e text

L]
15-826 Copyright: C. Faloutsos (2017) 4

15-826



C. Faloutsos

g CMU SCS
Spatial Access Methods -

problem
 Given a collection of geometric objects
(points, lines, polygons, ...)

* organize them on disk, to answer spatial
queries (like??)

15-826 Copyright: C. Faloutsos (2017) 5

% MU SCS
Spatial Access Methods -

problem
* Given a collection of geometric objects
(points, lines, polygons, ...)
 organize them on disk, to answer
— point queries

— range queries |:| o 0
— k-nn queries X \

— spatial joins ( ‘all pairs’ queries)] « ==

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS
Spatial Access Methods -

problem
 Given a collection of geometric objects
(points, lines, polygons, ...)
* organize them on disk, to answer
— point queries
— range queries El o
— k-nn queries - el \

— spatial joins ( ‘all pairs’ queries)) * ==

15-826 Copyright: C. Faloutsos (2017) 7

% CMU SCS
Spatial Access Methods -

problem

* Given a collection of geometric objects
(points, lines, polygons, ...)

 organize them on disk, to answer
— point queries

— range queries @. P
o\
.o

— k-nn queries )
— spatial joins ( ‘all pairs’ queries)

u -~

15-826 Copyright: C. Faloutsos (2017)

15-826



C. Faloutsos

g CMU SCS
Spatial Access Methods -

problem

 Given a collection of geometric objects
(points, lines, polygons, ...)

* organize them on disk, to answer

— point queries
— range queries |:| o0
— k-nn queries o oo \

— spatial joins ( ‘all pairs’ queries) * A==

.
o

15-826 Copyright: C. Faloutsos (2017)

% MU SCS
Spatial Access Methods -

problem
* Given a collection of geometric objects
(points, lines, polygons, ...)
 organize them on disk, to answer
— point queries

— range queries o 0
— k-nn queries
— spatial joins ( ‘all pairs” withing) * ==

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS
SAMs - motivation

* Q: applications?

15-826 Copyright: C. Faloutsos (2017)

% CMU SCS

SAMs - motivation
traditional DB GIS

age

salary

15-826 Copyright: C. Faloutsos (2017)

15-826



C. Faloutsos

SAMs - motivation
traditional DB GIS
age o °
salary
15-826 Copyright: C. Faloutsos (2017)

g CMU SCS

SAMs - motivation

CAD/CAM

find elements
too close
to each other

—1
—

—
—

1oan

15-826 Copyright: C. Faloutsos (2017) 14

SAMs - motivation
CAD/CAM
L | L |
L | L |
| ] | ]
C— —
—1
15-826 Copyright: C. Faloutsos (2017)

g CMU SCS

SAMs - motivation

A
S1 /\/Jf\/'
S ——
1 365
. day
A °
Sn ‘\'\/\
e
1 365
day
15-826 Copyright: C. Faloutsos (2017) 16

15-826



C. Faloutsos

% CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing
* spatial access methods

— problem dfn

— z-ordering

— R-trees

* text

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS
SAMs: solutions

 z-ordering

* R-trees

* (grid files)

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)

15-826 Copyright: C. Faloutsos (2017)

z-ordering
Q: how would you organize, e.g., n-dim

points, on disk? (C points per disk page)
Hint: reduce the problem to 1-d points (!!)

QI1: why?

A: Pt e
Q2: how? e e e
15-826 Copyright: C. Faloutsos (2017)

g CMU SCS$

z-ordering

Q: how would you organize, e.g., n-dim
points, on disk? (C points per disk page)
Hint: reduce the problem to 1-d points (!!)

QI1: why?

A: B-trees!
Q2: how? . . e
15-826 Copyright: C. Faloutsos (2017)

20

15-826



C. Faloutsos

% CMU SCS

z-ordering

Q2: how?

A: assume finite granularity; z-ordering = bit-
shuffling = N-trees = Morton keys = geo-
coding = ...

o . ®
. °
L] e o
o © °
R o
15-826 Copyright: C. Faloutsos (2017) 21
% CMU SCS$
L3
z-ordering

Q2.1: how to map n-d cells to 1-d cells?

15-826 Copyright: C. Faloutsos (2017) 23

g CMU SCS

z-ordering
Q2: how?
A: assume finite granularity (e.g., 2°?x23% ;
4x4 here)
Q2.1: how to map n-d cells to 1-d cells?
15-826 Copyright: C. Faloutsos (2017) 22
z-ordering

Q2.1: how to map n-d cells to 1-d cells?
A: row-wise

Q: is it good?
]
=
P
=
15-826 Copyright: C. Faloutsos (2017) 24

15-826



C. Faloutsos

g CMU SCS

z-ordering

Q: is it good?
A: great for ‘x’ axis; bad for ‘y’ axis

% CMU SCS

z-ordering

Q: How about the ‘snake’ curve?

15-826 Copyright: C. Faloutsos (2017)

L
=
15-826 Copyright: C. Faloutsos (2017) 25
z-ordering
Q: How about the ‘snake’ curve?
A: still problems:
| \ :
[ : :
| 12732
] v '
L
2732
27

15-826 Copyright: C. Faloutsos (2017) 26
g CMU SCS
z-ordering
Q: Why are those curves ‘bad’ ?
A: no distance preservation (~ clustering)
Q: solution? : T
] [
|
[ 2732
1 L
]
L
2732
15-826 Copyright: C. Faloutsos (2017) 28

15-826



C. Faloutsos

g CMU SCS

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)

15-826 Copyright: C. Faloutsos (2017)

29

g CMU SCS

z-ordering

Q: solution? (w/ good clustering, and easy to
compute, for 2-d and n-d?)

A: z-ordering/bit-shuffling/linear-quadtrees

‘looks’ better:

[ WNE, . )
LNV (N « few long jumps;
NN * scoops out the whole quadrant
NVYN before leaving it
* a.k.a. space filling curves
15-826 Copyright: C. Faloutsos (2017) 30

g CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,y) )?
A: 3 (equivalent) answers!

(TN
AN
D\
N [V

/L

15-826 Copyright: C. Faloutsos (2017)

31

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f(x,))?
Al: ‘2 (or ‘N”) shapes, RECURSIVELY

[ INE]
(NN N N N
DAY
I'N VN N
order-1 order-2
order (n+1)
15-826 Copyright: C. Faloutsos (2017) 32

15-826



C. Faloutsos

g CMU SCS

z-ordering

Notice:

« self similar (we’ 1l see about fractals, soon)

* method is hard to use: z =2 f(x,y)

[\NENMENE}
WY
NY-ARNY N S\S
PN VN

order-1 order-2

15-826 Copyright: C. Faloutsos (2017)

order (n+1)

33

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f{x,y) )?

A: 3 (equivalent) answers!

NA LN
QU
ADYAN

NV

Method #2?

72

15-826 Copyright: C. Faloutsos (2017)

34

% CMU SCS

z-ordering

bit-shuffling

X
00
y
11
[ WITNE
10 !\1\ N
OL TAN M\
o0 [TN VN
00 01 10 T
15-826 Copyright: C. Faloutsos (2017)

11

35

g CMU SCS

z-ordering

bit-shuffling

[ WINE,
10 !\1\ N
0L Tal AN
o0 [TN VN
00 01 10 n X
15-826 Copyright: C. Faloutsos (2017)

X y

00 11
' \\7
11 z=(0101),=5

36

15-826



C. Faloutsos

g CMU SCS

z-ordering

bit-shuffling

11
z=(0101),=5
N (oron:
8(1) {\3 "\3 How about the reverse:
(xy) =g@)?
00 01 10 TR
15-826 Copyright: C. Faloutsos (2017) 37

% CMU SCS

z-ordering

bit-shuffling

11
z=(0101),=5
10 !\lk\ N \I ( )
01 #\\k\
00 N[N How about n-d spaces?
00 01 10 1 X
15-826 Copyright: C. Faloutsos (2017) 38

% CMU SCS

z-ordering

z-ordering/bit-shuffling/linear-quadtrees
Q: How to generate this curve (z = f{x,y) )?
A: 3 (equivalent) answers!

RN
N 9
AT Method #37
INVN
15-826 Copyright: C. Faloutsos (2017) 39

z-ordering

linear-quadtrees : assign N->1, S->0 e.t.c.

W E
1 NA N 01...[11
N .
(N
NOAN
0 MNHPY S 00...{ 10..
0 1
15-826 Copyright: C. Faloutsos (2017) 40

15-826

10



C. Faloutsos

g CMU SCS

z-ordering

... and repeat recursively. Eg.: z,; . .. =
WN;WN = (0101),=5
W E

1 NINE
!\1\ NH N o1..[11..
N
\

00 11

3 S 00...] 10..

15-826 Copyright: C. Faloutsos (2017) 41

g CMU SCS

z-ordering

Drill: z-value of magenta cell, with the three

methods?
W E
method#1: 14
method#2: shuffle(11;10)=

REVES N (1110),= 14
N

0 N

15-826 Copyright: C. Faloutsos (2017) 43

z-ordering
Drill: z-value of magenta cell, with the three
methods?
W E
1 NN N
QAN
0 PHP S
0 1
15-826 Copyright: C. Faloutsos (2017) 42
z-ordering
Drill: z-value of magenta cell, with the three
methods?
W E
method#1: 14
1 N method#2: shuffle(11;10)=
(NN (1110), =14
N method#3: EN;ES=...=14
0 RNEARN S
0 1

15-826 Copyright: C. Faloutsos (2017) 44

15-826

11



C. Faloutsos

g CMU SCS

z-ordering - Detailed outline

* spatial access methods
— z-ordering
 main idea - 3 methods
# * use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2017) 45

z-ordering - usage & algo’ s
Q1: How to store on disk?

A:
Q2: How to answer range queries etc

NA LN
QU
ADYAN
NN

72

15-826 Copyright: C. Faloutsos (2017) 46

z-ordering - usage & algo’ s

Q1: How to store on disk?
A: treat z-value as primary key; feed to B-tree

PGH
SF \ R Z cname  etc
!\l\ 5 SF
l\\ l\\ 12 |PGH
INVN

15-826 Copyright: C. Faloutsos (2017) 47

g CMU SCS

z-ordering - usage & algo’ s
MAJOR ADVANTAGES w/ B-tree:
* already inside commercial systems (no
coding/debugging!)
* concurrency & recovery is ready
PGH

V4 cname etc

SF \ 4
N 5 |SF
AN AN 12 |PGH
IN VN

15-826 Copyright: C. Faloutsos (2017) 48

15-826

12



C. Faloutsos

% CMU SCS

Q2: queries? (eg.: find city at (0,3) )?

z-ordering - usage & algo’ s

etc

PGH
SF %}\ 4 V4 cname
M <<::::] 5 |SF
AT 12 |PGH
'NVN

15-826 Copyright: C. Faloutsos (2017)

49

% CMU SCS

z-ordering - usage & algo’ s

Q2: queries? (eg.: find city at (0,3) )?
A: find z-value; search B-tree

PGH
Z cname  etc

SF INE)
\ »|5 [SF
AT 12 [PGH
PN VN

Z/

15-826 Copyright: C. Faloutsos (2017) 50

% CMU SCS

Q2: range queries?

z

cname

z-ordering - usage & algo’ s

etc

SF

PGH

N 5
N AR 12
PNVN

15-826 Copyright: C. Faloutsos (2017)

51

g CMU SCS

z-ordering - usage & algo’ s

Q2: range queries?
A: compute ranges of z-values; use B-tree

PGH
9,11-15
Z cname  etc

SF \ 4
N 5 |SF
h:\ \p\\ 12 |PGH
I'N I\

15-826 Copyright: C. Faloutsos (2017)

52

15-826

13



C. Faloutsos

% CMU SCS

z-ordering - usage & algo’ s

Q2’ : range queries - how to reduce # of
qualifying of ranges?

PGH
9,11-15 7z cname etc

SF \ 4
N 5 |SF
TS 12 |PGH
| N

pawg
7

15-826 Copyright: C. Faloutsos (2017)

53

% CMU SCS

z-ordering - usage & algo’ s

Q2’ : range queries - how to reduce # of
qualifying of ranges?
A: Augment the query!

PGH
9,11-15 > 8-15
cname etc

D | N

SF \ 4
N SF
\ ‘\ | 12 |PGH

Z7
4

15-826 Copyright: C. Faloutsos (2017)

54

z-ordering - usage & algo’ s
Q2’ " : range queries - how to break a query
into ranges?

U" N [ . 9,11-15
TN
PNN

15-826 Copyright: C. Faloutsos (2017)

55

z-ordering - usage & algo’ s
Q2’ " : range queries - how to break a query

into ranges?
A: recursively, quadtree-style; decompose
only non-full quadrants

—12-15 9,11-15

15-826 Copyright: C. Faloutsos (2017)

56

15-826

14



15-826

C. Faloutsos

% CMU SCS

g CMU SCS

z-ordering - usage & algo’ s
Q2’ " : range queries - how to break a query

into ranges?
A: recursively, quadtree-style; decompose
only non-full quadrants

—12-15 >_ 9,11-15
- 9,11

Copyright: C. Faloutsos (2017)

15-826 57

z-ordering - Detailed outline

* spatial access methods

— z-ordering
* main idea - 3 methods
# * use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
« analysis; variations

— R-trees

15-826 Copyright: C. Faloutsos (2017) 58

% CMU SCS

z-ordering - usage & algo’ s
Q3: k-nn queries? (say, 1-nn)?

PGH

SF !k R Z cname  etc
N

5 |SF
AN AND 12 |PGH
| N

15-826 Copyright: C. Faloutsos (2017)

59

g CMU SCS

z-ordering - usage & algo’ s
Q3: k-nn queries? (say, 1-nn)?

PGH

A: traverse B-tree; find nn wrt z-values and ...

SF !k R Z cname  etc
N

NOCAN

5 |SF
12 |PGH
| N

15-826 Copyright: C. Faloutsos (2017)

60

15



15-826

C. Faloutsos

% CMU SCS

g MU SCS
z-ordering - usage & algo’ s z-ordering - usage & algo’ s

... ask a range query. ... ask a range query.

PGH PGH
SF YN SE \
N nn wrt z-value N \ nn wrt z-value
NOLAND ™~ AN ™~
TNER [_m [ PNTVR o m [
Copyright: C. Faloutsos (2017) 62

15-826

61

Copyright: C. Faloutsos (2017)

15-826

% CMU SCS g CMU SCS
z-ordering - usage & algo’ s z-ordering - Detailed outline

* spatial access methods

Q4: all-pairs queries? ( all pairs of cities .
within 10 miles from each other?) — z-ordering
* main idea - 3 methods
PGH * use w/ B-trees; algorithms (range, knn queries ...)
’ ‘ . .. ’ M -point . i dat
SF AInI4 | (we Il see spatial joins later: find # non po.u.l (eg ’ cgion) data
\l\ « analysis; variations
AN M all PA counties that intersect a lake) — R-trees
I'N VN _

64

15-826 Copyright: C. Faloutsos (2017)

63

Copyright: C. Faloutsos (2017)

15-826




C. Faloutsos

g CMU SCS

z-ordering - regions

Q: z-value for a region?

A

15-826

ANt
!\‘\ N
NOLAN
[ \

Copyright: C. Faloutsos (2017)

65

% CMU SCS

z-ordering - regions

Q: z-value for a region?
A: 1 or more z-values; by quadtree

decomposition
A B
N ZB =77
N\J KN

=97
,\ ,\ ZC LIRS

[ \

C

15-826 Copyright: C. Faloutsos (2017)

66

% CMU SCS

z-ordering - regions

“don’ t care”

/

Q: z-value for a region? zp= 11%*
W E ze="7?
A B 00
1 !\ll\\ N N 01...[11...
0 |’\ \"\ S 00...| 10..
0o €

15-826

Copyright: C. Faloutsos (2017)

67

11

g CMU SCS

z-ordering - regions

“don’ t care”

/

00

Q: z-value for a region? zg=11%*
W E z-= {0010; 1000}
A B
1 !\1\ 'Q\} N 01...[11...
0 |’\ ‘ll\ S 00...{ 10..
0 €
15826 Copyright:C. Falouisos (2017)

68

11

15-826

17



C. Faloutsos

z-ordering - regions

Q: How to store in B-tree?
Q: How to search (range etc queries)

A B

15-826 Copyright: C. Faloutsos (2017)

69

z-ordering - regions

Q: How to store in B-tree? A: sort (*<0<1)
Q: How to search (range etc queries)

B
A 2 obj-id etc
AN 0010 |C
NVTON
T \ t 0101 |A
TR 1000 |C
* 11** B

15-826 Copyright: C. Faloutsos (2017) 70

% CMU SCS

z-ordering - regions

Q: How to search (range etc queries) - eg
‘red” range query

B
A z  obj-id etc
NN 0010 |C
r\\l\ t‘l 0101 |A
FREIPR 1000|C

0 11** B

15-826 Copyright: C. Faloutsos (2017)

71

g CMU SCS

z-ordering - regions

Q: How to search (range etc queries) - eg
‘red’ range query
A: break query in z-values; check B-tree

A 2 obj-id etc
AN 0010 |C
N N
- \'\ 0101 |A
FREIPR 1000|C
@ 11** B

15-826 Copyright: C. Faloutsos (2017) 72

15-826

18



C. Faloutsos

g CMU SCS

z-ordering - regions

Almost identical to range queries for point
data, except for the “don’ t cares” - i.e.,

1100 22 11**

A 2 obj-id etc
MENIES 0010 |C
YO
- \t 0101 |A
T NI 1000 |C
* 11**|B

15-826 Copyright: C. Faloutsos (2017) 73

g CMU SCS

z-ordering - regions

Almost identical to range queries for point
data, except for the “don’ t cares” - i.e.,
z1=1100 ?? 11** =22

Specifically: does z1 contain/avoid/intersect
727

Q: what is the criterion to decide?

15-826 Copyright: C. Faloutsos (2017) 74

g CMU SCS

z-ordering - regions

z1=1100 ?? 11** =22

Specifically: does z1 contain/avoid/intersect
727

Q: what is the criterion to decide?

A: Prefix property: let r1, r2 be the
corresponding regions, and let r1 be the
smallest (=> z1 has fewest “*’s). Then:

15-826 Copyright: C. Faloutsos (2017) 75

z-ordering - regions
12 will either contain completely, or avoid

completely rl.
« it will contain r1, if z2 is the prefix of z1

A B
1100 27 11%**
N .
N\ region of z1:
NN completely contained in
NN region of 72
15-826 C

Copyright: C. Faloutsos (2017) 76

15-826

19



C. Faloutsos 15-826

g CMU SCS g CMU SCS

z-ordering - regions z-ordering - regions
Drill (True/False). Given: Drill (True/False). Given:
e z1=011001** * z1=011001**
° 22: 01****** ° 22: Ol******
o z3=0100%*** o 73=0100%***
T/F 12 contains rl T/F 12 contains rl1 - TRUE (prefix property)
T/F 13 contains rl T/F 13 contains r1 - FALSE (disjoint)
T/F 13 contains 12 T/F 13 contains r2 - FALSE (r2 contains r3)
15-826 Copyright: C. Faloutsos (2017) 77 15-826 Copyright: C. Faloutsos (2017) 78

g CMU SCS % CMU SCS

z-ordering - regions z-ordering - regions
Drill (True/False). Given: Drill (True/False). Given:
« z1=011001%** I « z1=011001%** S
o 7)= 01****** ° 22201******
o 73=0100%*** o 73=(]100%***
z3

T/F 12 contains rl1 - TRUE (prefix property)
T/F 13 contains rl1 - FALSE (disjoint)
T/F 13 contains r2 - FALSE (12 contains 13)

15-826 Copyright: C. Faloutsos (2017) 79 15-826 Copyright: C. Faloutsos (2017) 80

20



C. Faloutsos

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting  lakes
|/
/ L\ . Q
\ )
15-826 Copyright: C. Faloutsos (2017)

81

z-ordering - regions

Spatial joins: find (quickly) all

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting  lakes

@/ /

\ \

-
/
/
. A
| /
RS
[ /
)

15-826 Copyright: C. Faloutsos (2017)

83

counties intersecting  lakes
L 0
\/ _— \ /
AL
15-826 Copyright: C. Faloutsos (2017) 82
z-ordering - regions
Spatial joins: find (quickly) all
counties intersecting  lakes
Naive algorithm: O( N * M)
Something faster?
15-826 Copyright: C. Faloutsos (2017) 84

15-826

21



C. Faloutsos

z-ordering - regions

Spatial joins: find (quickly) all

counties intersecting  lakes
z obj-id etc z obj-id etc
0010 |ALG 0011 |Erie
0101 |Erie
1000 |WAS
11**% |ALG 10** |Ont.
15-826 Copyright: C. Faloutsos (2017) 85

z-ordering - regions

Spatial joins: find (quickly) all
counties intersecting  lakes

Solution: merge the lists of (sorted) z-values,
looking for the prefix property

footnote#1: ‘*’ needs careful treatment
footnote#2: need dup. elimination

15-826 Copyright: C. Faloutsos (2017) 86

g CMU SCS
z-ordering - Detailed outline

* spatial access methods
— z-ordering
* main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
# * analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2017) 87

% CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?

A
L/
L/ L,

15-826 Copyright: C. Faloutsos (2017) 88

15-826

22



C. Faloutsos

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then? Al: Gray codes

Q: then?
[ NES
L N\ (N
DAY
I'N VN
15-826 Copyright: C. Faloutsos (2017) 89
(Gray codes)
* Ingenious way to spot flickering LED —
binary: 000 0
001 1
010 2
3.5V 011 3
F. Gray. Pulse code communication, 100 4
March 17, 1953 1015
U.S. Patent 2,632,058 110 6
117
15-826 Copyright: C. Faloutsos (2017) 91

[ WITNES 1
LNV AN SIVAL
DAY A
N VN N AR
15-826 Copyright: C. Faloutsos (2017) 90
(Gray codes)
* Ingenious way to spot flickering LED
0
1
15-826 Copyright: C. Faloutsos (2017) 92

15-826

23



C. Faloutsos

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 .0
1 A
15-826 Copyright: C. Faloutsos (2017)

93

% MU SCS
(Gray codes)

* Ingenious way to spot flickering LED
0 .0

A

15-826 Copyright: C. Faloutsos (2017) 94

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 .0
1 1
-
.0
15-826 Copyright: C. Faloutsos (2017)

95

% CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 00
1 01
@ 11
10
15-826 Copyright: C. Faloutsos (2017) 96

15-826

24



C. Faloutsos

g CMU SCS

(Gray codes)
* Ingenious way to spot flickering LED
0 00 000 0
1 01 001 1
@ 11 011 2
10 @ 010 3
110 4
15
101 6
100 7

15-826 Copyright: C. Faloutsos (2017)

97

g CMU SCS

z-ordering - variations

Q: is z-ordering the best we can do?
A: probably not - occasional long ‘jumps’
Q: then? Al: Gray codes — CAN WE DO BETTER?

% CMU SCS

z-ordering - variations

A2: Hilbert curve! (a.k.a. Hilbert-Peano

curve)
[ INES -
LNV .
D AN | =
N VN L
15-826 Copyright: C. Faloutsos (2017)

99

NN maiw|
LNV AN SIVAL
N AN A
N VN N AR
15-826 Copyright: C. Faloutsos (2017) 98
(break)

Giuseppe Peano
(1858-1932)

15-826 Copyright: C. Faloutsos (2017) 100

David Hilbert
(1862-1943)

15-826

25



C. Faloutsos

g CMU SCS

z-ordering - variations

‘Looks’ better (never long jumps). How to

derive it?
[ WTNE 1 |
LNV QN .|
N AN | =
IN VN HT s
15-826 Copyright: C. Faloutsos (2017) 101

g CMU SCS

z-ordering - variations

‘Looks’ better (never long jumps). How to

derive it?
R 1w
i AR
order-1 order-2 order (n+1)
15-826 Copyright: C. Faloutsos (2017) 102

% CMU SCS

z-ordering - variations

Q: function for the Hilbert curve ( 4 = f(x,y) )?
A: bit-shuffling, followed by post-processing,
to account for rotations. Linear on # bits.

See textbook, for pointers to code/
algorithms (eg., [Jagadish, 90])

15-826 Copyright: C. Faloutsos (2017) 103

g CMU SCS

z-ordering - variations

Q: how about Hilbert curve in 3-d? n-d?
A: Exists (and is not unique!). Eg., 3-d,
order-1 Hilbert curves (Hamiltonian paths

on cube)
#1 #2

o 1) JE

15-826 Copyright: C. Faloutsos (2017) 104

15-826

26



C. Faloutsos

% CMU SCS

z-ordering - Detailed outline

* spatial access methods
— z-ordering
 main idea - 3 methods
* use w/ B-trees; algorithms (range, knn queries ...)
* non-point (eg., region) data
* analysis; variations
— R-trees

15-826 Copyright: C. Faloutsos (2017) 105

z-ordering - analysis
Q: How many pieces ( ‘quad-tree blocks” ) per

region?
A: proportional to perimeter (surface etc)

K

Iy
e

15-826 Copyright: C. Faloutsos (2017) 106

il

z-ordering - analysis

(How long is the coastline, say, of England?

Paradox: The answer changes with the yard-
stick > fractals ...)

)

%
%

15-826 Copyright: C. Faloutsos (2017) 107

i

z-ordering - analysis

Q: Should we decompose a region to full
detail (and store in B-tree)?

)

Iy
g

15-826 Copyright: C. Faloutsos (2017) 108

s

15-826

27



C. Faloutsos

z-ordering - analysis

Q: Should we decompose a region to full
detail (and store in B-tree)?

A: NO! approximation with 1-3 pieces/z-
values is best [Orenstein90]

15-826 Copyright: C. Faloutsos (2017) 109

z-ordering - analysis

Q: how to measure the ‘goodness’ of a

curve?
[ WITNES |
LNV |
N AND i |
I'N VN M
15-826 Copyright: C. Faloutsos (2017) 110

z-ordering - analysis

Q: how to measure the ‘goodness’ of a
curve?

A:e.gg

7 4

runs, for rar _$c tEL eries

©
N O
N NN ——
N (VN 11

7 /7S

|
v

4 runs 3 runs

(#runs ~ #disk accesses on B-tree)
15-826 Copyright: C. Faloutsos (2017) 111

z-ordering - analysis

Q: So, is Hilbert really better?
A: 27% fewer runs, for 2-d (similar for 3-d)

Q: are there formulas for #runs, #of quadtree
blocks etc?

A: Yes ([Jagadish; Moon+ etc] see textbook)

15-826 Copyright: C. Faloutsos (2017) 112

15-826

28



C. Faloutsos

z-ordering - fun observations

Hilbert and z-ordering curves: “space filling
curves”: eventually, they visit every point

in n-d space - therefore:

Ny By
i a

order-1 order-2 ...order (n+1)

15-826 Copyright: C. Faloutsos (2017) 113

z-ordering - fun observations
.. they show that the plane has as many points

as a line (> headaches for 1900 s
mathematics/topology). (fractals, again!)

IR =
EEjNiR -

order-1 order-2 ...order (n+1)

15-826 Copyright: C. Faloutsos (2017) 114

% CMU SCS

z-ordering - fun observations

Observation #2: Hilbert (like) curve for video #3g
encoding [Y. Matias+, CRYPTO ‘87]: o

| N
M

m
v

= i mE

15-826 Copyright: C. Faloutsos (2017) 115

z-ordering - fun observations

In general, Hilbert curve is great for
preserving distances, clustering, vector
quantization etc

15-826 Copyright: C. Faloutsos (2017) 116

15-826

29



C. Faloutsos

% CMU SCS

Indexing - Detailed outline

* primary key indexing
* secondary key / multi-key indexing
* spatial access methods

— problem dfn
— z-ordering

15-826 Copyright: C. Faloutsos (2017)

117

g CMU SCS

Conclusions

» z-ordering is a great idea (n-d points -> 1-d
points; feed to B-trees)
 used by TIGER system

http://www.census.gov/geo/www/tiger/
+ and (most probably) by other GIS products

» works great with low-dim points

15-826 Copyright: C. Faloutsos (2017) 118

15-826

30



