C. Faloutsos 15-826

g CMU SCS g CMU SCS

Reading Material
15-826: Multimedia Databases » [Litwin] Litwin, W, (1980), Linear
.. Hashing: A New Tool for File and Table
and Data Mllllllg Addressing, VLDB, Montreal, Canada,

1980
* textbook, Chapter 3
* Ramakrinshan+Gehrke, Chapter 11

Lecture#3: Primary key indexing — hashing
C. Faloutsos

15-826 Copyright: C. Faloutsos (2017) 2

% CMU SCS g CMU SCS

Outline Indexing - Detailed outline
Goal: ‘Find similar / interesting things’ e primary key indexing
« Intro to DB -](3-tr§e)s }allnthariants
. .. . — (static) has ng
Indexmg - similarity search _ extendible hashing

* Data Mining » secondary key indexing
* spatial access methods
e text

15-826 Copyright: C. Faloutsos (2017) 3 15-826 Copyright: C. Faloutsos (2017) 4

C. Faloutsos 15-826

% CMU SCS g CMU SCS
(Static) Hashing Hashing
Problem: “find EMP record with ssn=123" A: Brilliant idea: key-to-address transformation:
What if disk space was free, and time was at
premium? #0 page
N R
N R
#999,999,999
15-826 Copyright: C. Faloutsos (2017) 5 15-826 Copyright: C. Faloutsos (2017) 6
% CMU SCS g CMU SCS
Hashing Hashing
Since space is NOT free: Typically: each hash bucket is a page, holding
* use M, instead of 999,999,999 slots many records:
* hash function: h(key) = slot-id
#0 page #0 page
N R N B
[123; Smiths Main str |—— T #123 page [1235 Smith; Main str -——— [#(123)
I N K
#999,999,999 M
15-826 Copyright: C. Faloutsos (2017) 7 15-826 Copyright: C. Faloutsos (2017) 8

C. Faloutsos

g CMU SCS

Hashing - design decisions?

* eg., IRS, 200M tax returns, by SSN

15-826 Copyright: C. Faloutsos (2017) 9

g CMU SCS

Indexing- overview

* B-trees
* (static) hashing
™) - hashing functions

— size of hash table
— collision resolution
— Hashing vs B-trees
— Indices in SQL

» Extendible hashing

15-826 Copyright: C. Faloutsos (2017) 10

Design decisions

1) formula /() for hashing function
2) size of hash table M
3) collision resolution method

15-826 Copyright: C. Faloutsos (2017) 11

% CMU SCS

Design decisions

1) formula £() for hashing function Division hashing

2) size of hash table M 90% utilization
3) collision resolution method Separate chaining
15-826 Copyright: C. Faloutsos (2017) 12

15-826

C. Faloutsos

Design decisions - functions
* Goal: uniform spread of keys over hash
buckets
 Popular choices:
— Division hashing

— Multiplication hashing

15-826 Copyright: C. Faloutsos (2017) 13

Division hashing

* eg., M=2; hash on driver-license number
(dIn), where last digit is ‘gender’ (0/1 =M/
F)

* in an army unit with predominantly male
soldiers

* Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

15-826 Copyright: C. Faloutsos (2017) 15

g CMU SCS

Division hashing

h(x) = (a*x+b) mod M
* eg., h(ssn) = (ssn) mod 1,000
— gives the last three digits of ssn

* M: size of hash table - choose a prime
number, defensively (why?)

15-826 Copyright: C. Faloutsos (2017)

g CMU SCS

Design decisions

1) formula 4() for hashing function
2) size of hash table M
3) collision resolution method

15-826 Copyright: C. Faloutsos (2017)

15-826

C. Faloutsos 15-826

Size of hash table Size of hash table

* eg., 50,000 employees, 10 employee- * eg., 50,000 employees, 10 employees/page

records /page * Q: M=?7? pages/buckets/slots

. Q: M=7?
Q: M=?? pages/buckets/slots « A: utilization ~ 90% and

— M: prime number

Eg., in our case: M= closest prime to
50,000/10 /0.9 = 5,555

15-826 Copyright: C. Faloutsos (2017) 17 15-826 Copyright: C. Faloutsos (2017) 18

Design decisions Collision resolution
1) formula /() for hashing function * Q: whatisa ‘collision’ ?
2) size of hash table M o A:??

3) collision resolution method

15-826 Copyright: C. Faloutsos (2017) 19 15-826 Copyright: C. Faloutsos (2017) 20

C. Faloutsos

Collision resolution

#0 page

NN
fl’l‘ #h(123)
NN

123; Smith; Main str.

15-826 Copyright: C. Faloutsos (2017) 21

Collision resolution

* Q: whatisa ‘collision’ ?

o A:??

* Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

 A: ‘birthday paradox’

15-826 Copyright: C. Faloutsos (2017) 23

Collision resolution

» Q: whatisa ‘collision ?
o A ??

* Q: why worry about collisions/overflows?
(recall that buckets are ~90% full)

15-826 Copyright: C. Faloutsos (2017) 22

Collision resolution

 open addressing
— linear probing (ie., put to next slot/bucket)

— re-hashing

* separate chaining (ie., put links to overflow
pages)

15-826 Copyright: C. Faloutsos (2017) 24

15-826

C. Faloutsos

g CMU SCS

Collision resolution

linear probing:

#0 page

N

123; Smith; Main str. |—’
\
N

fl’l‘ #h(123)

>

v

¢

15-826 Copyright: C. Faloutsos (2017)

25

% CMU SCS

Collision resolution

separate chaining

123; Smith; Main str. |/ FUI‘

15-826 Copyright: C. Faloutsos (2017)

27

Collision resolution

re-hashing #0 page

"SRR
FUL #h(123)

123; Smith; Main str.

h2()

15-826 Copyright: C. Faloutsos (2017) 26

g CMU SCS

Design decisions - conclusions

* function: division hashing
—h(x) = (a*x+b) mod M

* size M: ~90% util.; prime number.

* collision resolution: separate chaining
— easier to implement (deletions!);

— no danger of becoming full

15-826 Copyright: C. Faloutsos (2017) 28

15-826

C. Faloutsos

g CMU SCS

Indexing- overview
* B-trees
* (static) hashing
— hashing functions
— size of hash table
— collision resolution
— Hashing vs B-trees
— Indices in SQL
* Extendible hashing

15-826 Copyright: C. Faloutsos (2017)

29

Hashing vs B-trees:

Hashing offers
» speed ! (O(1) avg. search time)
..but:

15-826 Copyright: C. Faloutsos (2017)

30

Hashing vs B-trees:

..but B-trees give:
* key ordering:
— range queries
— proximity queries
— sequential scan
* O(log(N)) guarantees for search, ins./del.
+ graceful growing/shrinking

15-826 Copyright: C. Faloutsos (2017)

31

% CMU SCS

Hashing vs B-trees:

thus:

* B-trees are implemented in most systems
footnotes:

e ‘dbm’ and ‘ndbm’ of UNIX: offer one or both

15-826 Copyright: C. Faloutsos (2017)

32

15-826

C. Faloutsos 15-826

% CMU SCS g CMU SCS

Indexing- overview Indexing in SQL

e B-trees
e create index <index-name> on <relation-

name> (<attribute-list>)
* create unique index <index-name> on
<relation-name> (<attribute-list>)

* (static) hashing
— hashing functions
— size of hash table
— collision resolution
_ Hashing vs B-trees ¢ drop index <index-name>
®) — Indices in SQL
* Extendible hashing

15-826 Copyright: C. Faloutsos (2017) 33 15-826 Copyright: C. Faloutsos (2017) 34

% CMU SCS g CMU SCS

Indexing in SQL Indexing- overview
> eg., * B-trees
create index ssn-index « (static) Hashing
on STUDENT (ssn)

* extensible hashing
* or (eg., on TAKES(ssn,cid, grade)): -

create index sc-index
on TAKES (ssn, c-id)

— ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2017) 35 15-826 Copyright: C. Faloutsos (2017) 36

C. Faloutsos

g CMU SCS

Problem with static hashing

* problem: overflow?

 problem: underflow? (underutilization)

15-826 Copyright: C. Faloutsos (2017) 37

g CMU SCS

Solution: Dynamic/extendible
hashing

* idea: shrink / expand hash table on demand..
* ..dynamic hashing
Details: how to grow gracefully, on overflow?

Many solutions — simplest: Linear hashing
[Litwin]

15-826 Copyright: C. Faloutsos (2017) 38

=

g CMU SCS

Indexing- overview

* B-trees

« Static hashing

 extendible hashing
— ‘extensible’ hashing [Fagin, Pipenger +]
— ‘linear’ hashing [Litwin]

15-826 Copyright: C. Faloutsos (2017) 39

% CMU SCS

Linear hashing - Detailed
overview

* Motivation

* main idea

* search algo

* insertion/split algo

* deletion

* performance analysis

* variations

15-826 Copyright: C. Faloutsos (2017) 40

15-826

10

C. Faloutsos

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

15-826 Copyright: C. Faloutsos (2017)

41

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

A: split buckets from left to right, regardless
of which one overflowed (‘crazy’, but it
works well!) - Eg.:

15-826 Copyright: C. Faloutsos (2017) 42

% CMU SCS

Linear hashing
Initially: 4(x) =x mod N (N=4 here)
Assume capacity: 3 records / bucket

Insert key ‘17’

bucket- id 0 1 2 3
4 85 916 |7 11
13
15-826 Copyright: C. Faloutsos (2017)

43

Linear hashing

Initially: 4(x) = x mod N (N=4 here)
17 overflow of bucket#1

bucket- id 0 1 2 3

4 815 916 7 11
13

15-826 Copyright: C. Faloutsos (2017) 44

15-826

11

C. Faloutsos

Linear hashing

Initially: 4(x) =x mod N (N=4 here)
overflow of bucket#1

17 Split #0, anyway!!!
bucket- id 0 1 2 3
4 815 916 7 11
13
15-826 Copyright: C. Faloutsos (2017) 45

Linear hashing

Initially: #(x) = x mod N (N=4 here)

Split #0, anyway!!!
17 Q: But, how?
bucket- id 0 1 2 3
4 815 96 |7 11
13
15:826 Copyright: C. Faloutsos (2017) 46

% CMU SCS

Linear hashing
A:use two h.f.: h0(x) =x mod N
hi(x) = x mod (2*N)

17
bucket- id 0 1 2 3
4 85 916 |7 11
13
15-826 Copyright: C. Faloutsos (2017) 47

g CMU SCS

Linear hashing - after split:
A:use two h.f.: h0(x) =x mod N
hi(x) = x mod (2*N)

bucket- id 0 1 2 3 4
8 |5 916 |7 11|4
13
17
15-826 Copyright: C. Faloutsos (2017) 48

15-826

12

C. Faloutsos

g CMU SCS

Linear hashing - after split:
A:use two h.f.: h0(x) = x mod N
hi(x) = x mod (2*N)

bucket- id 0 1 2 3 4

8 5 916 7 11| 4

13
I

17 overflow

15-826 Copyright: C. Faloutsos (2017)

49

% CMU SCS

Linear hashing - after split:
A:use two h.f.: h0(x) = x mod N
hil(x) = x mod (2*N)

lsplit ptr
bucket- id 0 1 2 3 4
8 > 9|6 |7 11|4
13
|
17 overflow

15-826 Copyright: C. Faloutsos (2017) 50

Linear hashing - overview

* Motivation
* main idea
®) « search algo
* insertion/split algo
* deletion
 performance analysis

* variations

15-826 Copyright: C. Faloutsos (2017)

51

g CMU SCS

Linear hashing - searching?

h0(x) = x mod N (for the un-split buckets)
hi(x) = x mod (2*N) (for the splitted ones)

lsplit ptr
bucket- id 0 1 2 3 4
8 |5 96 |7 11|4
13
|
17 overflow

15-826 Copyright: C. Faloutsos (2017) 52

15-826

13

C. Faloutsos

g CMU SCS

Linear hashing - searching?
Ql: find key ‘6" ? Q2: find key ‘4’ ?

Q3: key ‘8’2
lsplit ptr
bucket- id 0 1 2 3 4
8 5916 7 114
13
|
17 overflow
15-826 Copyright: C. Faloutsos (2017)

53

g CMU SCS

Linear hashing - searching?
Algo to find key k’:
» compute b= h0(k);

« if b<split-ptr, compute b=hl(k)

« search bucket b

15-826 Copyright: C. Faloutsos (2017) 54

Linear hashing - overview

* Motivation
* main idea
* search algo
m). insertion/split algo
* deletion
 performance analysis

* variations

15-826 Copyright: C. Faloutsos (2017)

55

Linear hashing - insertion?

Algo: insert key ‘K’

* compute appropriate bucket ‘b’

» if the overflow criterion is true
ssplit the bucket of ‘split-ptr’
o split-ptr ++ (*)

15-826 Copyright: C. Faloutsos (2017) 56

15-826

14

C. Faloutsos

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?

15-826 Copyright: C. Faloutsos (2017)

57

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
Al: space utilization > u-max

A2: avg length of ovf chains > max-len
A3: ...

15-826 Copyright: C. Faloutsos (2017)

59

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?

Al: space utilization >= u-max

15-826 Copyright: C. Faloutsos (2017) 58

g CMU SCS

Linear hashing - insertion?

Algo: insert key ‘K’
* compute appropriate bucket ‘b’
« if the overflow criterion is true

ssplit the bucket of ‘split-ptr’

* split-ptr 7*)

what if we reach the right edge??

15-826 Copyright: C. Faloutsos (2017) 60

15-826

15

C. Faloutsos

g CMU SCS

Linear hashing - split now?

hO(x) =xmod N (for the un-split buckets)
hi(x) = x mod (2*N) for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2017)

61

% CMU SCS

Linear hashing - split now?

h0(x) = x mod N (for the un-split buckets)
hi(x) = x mod (2*N) (for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2017) 62

% CMU SCS

Linear hashing - split now?

m‘-—ﬁ%‘iﬁiﬂa Tm=split buckets)

hi(x) =x mod (2*N) (for the splitted ones)

split ptr

15-826 Copyright: C. Faloutsos (2017)

63

g CMU SCS

Linear hashing - split now?

_m——:ﬁﬁﬂho n-split buckets)

hi(x) =x mod (2*N) (for the splitted ones)

split ptr
0 1 2 34 5 6 7
15-826 Copyright: C. Faloutsos (2017) 64

15-826

16

C. Faloutsos 15-826

g CMU SCS g CMU SCS

Linear hashing - split now? Linear hashing - observations

this state is called ‘full ion’ : :
is state is called “full expansion In general, at any point of time, we have at most two

h.f. active, of the form:

split ptr “h,(x) = x mod (N * 2)
lo' 1 5 3 4 5 6 7 *h,.,(x) =xmod (N *2*!)
(after a full expansion, we have only one h.f)
15-826 Copyright: C. Faloutsos (2017) 65 15-826 Copyright: C. Faloutsos (2017) 66

g CMU SCS g CMU SCS

Linear hashing - overview Linear hashing - deletion?
* Motivation * reverse of insertion:
* main idea

* search algo

* insertion/split algo
m)+ deletion

 performance analysis

* variations

15-826 Copyright: C. Faloutsos (2017) 67 15-826 Copyright: C. Faloutsos (2017) 68

17

C. Faloutsos

g CMU SCS

Linear hashing - deletion?

* reverse of insertion:

¢ if the underflow criterion is met

— contract!

15-826 Copyright: C. Faloutsos (2017)

69

g CMU SCS

Linear hashing - how to
contract?

h0(x) = mod N (for the un-split buckets)
hi(x) =mod (2*N) (for the splitted ones)
split ptr
0 1 2 3 4 5 6
15-826 Copyright: C. Faloutsos (2017) 70

g CMU SCS
Linear hashing - how to

contract?
h0(x) = mod N (for the un-split buckets)
hi(x) =mod (2*N) (for the splitted ones)

split ptr

|

0o 1 2 3 4 5

4

15-826 Copyright: C. Faloutsos (2017)

71

g CMU SCS

Linear hashing - overview

* Motivation
* main idea
* search algo
* insertion/split algo
* deletion
®) « performance analysis
* variations

15-826 Copyright: C. Faloutsos (2017) 72

15-826

18

C. Faloutsos

g CMU SCS

* [Larson, TODS 1982]

Linear hashing - performance

split: if u>u,

search-time
=.85
(avg # of d.a.) (say uy=85)
1.01da. | e
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 73

g CMU SCS

* [Larson, TODS 1982]

Linear hashing - performance

split: if u>u,

search-time
=85
(avg # of d.a.) (say uy=85)
??
1.01 da. F I/V .
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 74

% CMU SCS

* [Larson, TODS 1982]

Linear hashing - performance

split: if u>u,

search-time
=.85
(avg # of d.a.) (say ug=85)
2?7
1.0l da. | /
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 75

g CMU SCS

Linear hashing - performance

* [Larson, TODS 1982]

split: if u>u,

search-time
=.85

(avg # of d.a.) (say ug=85)

/ 7
1.01d.a. }
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 76

15-826

19

C. Faloutsos

g CMU SCS

Linear hashing - performance

* [Larson, TODS 1982]

split: if u>u,

search-time
=85
(avg # of d.a.) (say uy=85)
1.01 d.a. / .
1 1
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 77

g CMU SCS

Linear hashing - performance

* [Larson, TODS 1982]

split: if u>u,

search-time
(avg #of d.a.) (say u,=.85)
eg., 1.3d.a. / \
eg., 1.01da. |- ,
1]
R 2R # records
15-826 Copyright: C. Faloutsos (2017) 78

Linear hashing - overview

* Motivation

* main idea

* search algo

* insertion/split algo

* deletion
 performance analysis

). variations

15-826 Copyright: C. Faloutsos (2017) 79

g CMU SCS

Other hashing variations
« ‘order preserving’

* ‘perfect hashing’ (no collisions!) [Ed. Fox,
et al]

15-826 Copyright: C. Faloutsos (2017) 80

15-826

20

C. Faloutsos

Primary key indexing -
conclusions

* hashing is O(1) on the average for search

* linear hashing: elegant way to grow a hash
table

* B-trees: industry work-horse for primary-
key indexing (O(log(N) w.c.!)

15-826 Copyright: C. Faloutsos (2017) 81

g CMU SCS

References for primary key
indexing

+ [Fagint+] Ronald Fagin, Jiirg Nievergelt, Nicholas
Pippenger, H. Raymond Strong: Extendible Hashing - A
Fast Access Method for Dynamic Files. TODS 4(3):
315-344(1979)

» [Fox] Fox, E. A, L. S. Heath, Q.-F. Chen, and A. M.
Daoud. "Practical Minimal Perfect Hash Functions for
Large Databases." Communications of the ACM 35.1
(1992): 105-21.

15-826 Copyright: C. Faloutsos (2017) 82

g CMU SCS
References, cont’ d

* [Knuth] D.E. Knuth. The Art Of Computer Programming,
Vol. 3, Sorting and Searching, Addison Wesley

» [Larson] Per-Ake Larson Performance Analysis of Linear
Hashing with Partial Expansions ACM TODS, 7,4, Dec.
1982, pp 566--587

#* [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool

for File and Table Addressing, VLDB, Montreal, Canada,
1980

15-826 Copyright: C. Faloutsos (2017) 83

15-826

21

