
C. Faloutsos 15-826

1

CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture#3: Primary key indexing – hashing
C. Faloutsos

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 2

Reading Material

•  [Litwin] Litwin, W., (1980), Linear
Hashing: A New Tool for File and Table
Addressing, VLDB, Montreal, Canada,
1980

•  textbook, Chapter 3
•  Ramakrinshan+Gehrke, Chapter 11

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 3

Outline

Goal: ‘Find similar / interesting things’
•  Intro to DB
•  Indexing - similarity search
•  Data Mining

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 4

Indexing - Detailed outline

•  primary key indexing
– B-trees and variants
–  (static) hashing
–  extendible hashing

•  secondary key indexing
•  spatial access methods
•  text
•  ...

C. Faloutsos 15-826

2

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 5

(Static) Hashing

Problem: “find EMP record with ssn=123”
What if disk space was free, and time was at

premium?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 6

Hashing

A: Brilliant idea: key-to-address transformation:

#0 page

#123 page

#999,999,999

123; Smith; Main str

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 7

Hashing

Since space is NOT free:
•  use M, instead of 999,999,999 slots
•  hash function: h(key) = slot-id

#0 page

#123 page

#999,999,999

123; Smith; Main str

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 8

Hashing

Typically: each hash bucket is a page, holding
many records:

#0 page

#h(123)

M

123; Smith; Main str

C. Faloutsos 15-826

3

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 9

Hashing - design decisions?

•  eg., IRS, 200M tax returns, by SSN

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 10

Indexing- overview
•  B-trees
•  (static) hashing

–  hashing functions
–  size of hash table
–  collision resolution
– Hashing vs B-trees
–  Indices in SQL

•  Extendible hashing

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 11

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 12

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

Division hashing
90% utilization
Separate chaining

C. Faloutsos 15-826

4

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 13

Design decisions - functions

•  Goal: uniform spread of keys over hash
buckets

•  Popular choices:

– Division hashing

– Multiplication hashing

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 14

Division hashing

h(x) = (a*x+b) mod M

•  eg., h(ssn) = (ssn) mod 1,000

–  gives the last three digits of ssn

•  M: size of hash table - choose a prime
number, defensively (why?)

SKIP

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 15

•  eg., M=2; hash on driver-license number
(dln), where last digit is ‘gender’ (0/1 = M/
F)

•  in an army unit with predominantly male
soldiers

•  Thus: avoid cases where M and keys have
common divisors - prime M guards against
that!

Division hashing
SKIP

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 16

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

SKIP

C. Faloutsos 15-826

5

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 17

Size of hash table

•  eg., 50,000 employees, 10 employee-
records / page

•  Q: M=?? pages/buckets/slots

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 18

Size of hash table

•  eg., 50,000 employees, 10 employees/page

•  Q: M=?? pages/buckets/slots

•  A: utilization ~ 90% and
– M: prime number

Eg., in our case: M= closest prime to
50,000/10 / 0.9 = 5,555

SKIP

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 19

Design decisions

1) formula h() for hashing function
2) size of hash table M
3) collision resolution method

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 20

Collision resolution

•  Q: what is a ‘collision’?
•  A: ??

SKIP

C. Faloutsos 15-826

6

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 21

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 22

Collision resolution

•  Q: what is a ‘collision’?
•  A: ??
•  Q: why worry about collisions/overflows?

(recall that buckets are ~90% full)

SKIP

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 23

Collision resolution

•  Q: what is a ‘collision’?
•  A: ??
•  Q: why worry about collisions/overflows?

(recall that buckets are ~90% full)
•  A: ‘birthday paradox’

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 24

Collision resolution

•  open addressing
–  linear probing (ie., put to next slot/bucket)
–  re-hashing

•  separate chaining (ie., put links to overflow
pages)

SKIP

C. Faloutsos 15-826

7

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 25

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

linear probing:

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 26

Collision resolution

#0 page

#h(123)

M

123; Smith; Main str.

re-hashing

h1()

h2()

SKIP

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 27

Collision resolution

123; Smith; Main str.

separate chaining

SKIP
CMU SCS

15-826 Copyright: C. Faloutsos (2017) 28

Design decisions - conclusions

•  function: division hashing
–  h(x) = (a*x+b) mod M

•  size M: ~90% util.; prime number.
•  collision resolution: separate chaining

–  easier to implement (deletions!);
–  no danger of becoming full

C. Faloutsos 15-826

8

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 29

Indexing- overview
•  B-trees
•  (static) hashing

–  hashing functions
–  size of hash table
–  collision resolution
– Hashing vs B-trees
–  Indices in SQL

•  Extendible hashing

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 30

Hashing vs B-trees:

Hashing offers
•  speed ! (O(1) avg. search time)

..but:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 31

Hashing vs B-trees:

..but B-trees give:
•  key ordering:

–  range queries
– proximity queries
–  sequential scan

•  O(log(N)) guarantees for search, ins./del.
•  graceful growing/shrinking

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 32

Hashing vs B-trees:

thus:
•  B-trees are implemented in most systems

footnotes:
•  ‘dbm’ and ‘ndbm’ of UNIX: offer one or both

C. Faloutsos 15-826

9

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 33

Indexing- overview
•  B-trees
•  (static) hashing

–  hashing functions
–  size of hash table
–  collision resolution
– Hashing vs B-trees
–  Indices in SQL

•  Extendible hashing

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 34

Indexing in SQL

•  create index <index-name> on <relation-
name> (<attribute-list>)

•  create unique index <index-name> on
<relation-name> (<attribute-list>)

•  drop index <index-name>

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 35

Indexing in SQL

•  eg.,
create index ssn-index
on STUDENT (ssn)

•  or (eg., on TAKES(ssn,cid, grade)):
create index sc-index
on TAKES (ssn, c-id)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 36

Indexing- overview

•  B-trees
•  (static) Hashing
•  extensible hashing

–  ‘linear’ hashing [Litwin]

C. Faloutsos 15-826

10

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 37

Problem with static hashing

•  problem: overflow?

•  problem: underflow? (underutilization)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 38

Solution: Dynamic/extendible
hashing

•  idea: shrink / expand hash table on demand..

•  ..dynamic hashing

Details: how to grow gracefully, on overflow?

Many solutions – simplest: Linear hashing
[Litwin]

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 39

Indexing- overview

•  B-trees
•  Static hashing
•  extendible hashing

–  ‘extensible’ hashing [Fagin, Pipenger +]
–  ‘linear’ hashing [Litwin]

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 40

Linear hashing - Detailed
overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

C. Faloutsos 15-826

11

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 41

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 42

Linear hashing

Motivation: ext. hashing needs directory etc
etc; which doubles (ouch!)

Q: can we do something simpler, with
smoother growth?

A: split buckets from left to right, regardless
of which one overflowed (‘crazy’, but it
works well!) - Eg.:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 43

Linear hashing
Initially: h(x) = x mod N (N=4 here)

Assume capacity: 3 records / bucket

Insert key ‘17’

0 1 2 3 bucket- id

4 8 5 9
13

6 7 11

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 44

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3 bucket- id

4 8 5 9
13

6 7 11

17 overflow of bucket#1

C. Faloutsos 15-826

12

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 45

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3 bucket- id

4 8 5 9
13

6 7 11

17
overflow of bucket#1

Split #0, anyway!!!

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 46

Linear hashing

Initially: h(x) = x mod N (N=4 here)

0 1 2 3 bucket- id

4 8 5 9
13

6 7 11

17
Split #0, anyway!!!

Q: But, how?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 47

Linear hashing
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3 bucket- id

4 8 5 9
13

6 7 11

17

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 48

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3 bucket- id

8 5 9
13

6 7 11

17

4

4

C. Faloutsos 15-826

13

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 49

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3 bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 50

Linear hashing - after split:
A: use two h.f.: h0(x) = x mod N

 h1(x) = x mod (2*N)

0 1 2 3 bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 51

Linear hashing - overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 52

Linear hashing - searching?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

0 1 2 3 bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

C. Faloutsos 15-826

14

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 53

Linear hashing - searching?
Q1: find key ‘6’? Q2: find key ‘4’?

Q3: key ‘8’?

0 1 2 3 bucket- id

8 5 9
13

6 7 11

17

4

overflow

4

split ptr

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 54

Linear hashing - searching?

Algo to find key ‘k’:

•  compute b= h0(k);

•  if b<split-ptr, compute b=h1(k)

•  search bucket b

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 55

Linear hashing - overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 56

Linear hashing - insertion?
Algo: insert key ‘k’

•  compute appropriate bucket ‘b’

•  if the overflow criterion is true

• split the bucket of ‘split-ptr’

•  split-ptr ++ (*)

C. Faloutsos 15-826

15

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 57

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 58

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization >= u-max

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 59

Linear hashing - insertion?

notice: overflow criterion is up to us!!
Q: suggestions?
A1: space utilization > u-max
A2: avg length of ovf chains > max-len
A3:

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 60

Linear hashing - insertion?
Algo: insert key ‘k’

•  compute appropriate bucket ‘b’

•  if the overflow criterion is true

• split the bucket of ‘split-ptr’

•  split-ptr ++ (*)

what if we reach the right edge??

C. Faloutsos 15-826

16

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 61

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) for the splitted ones)

split ptr

0 1 2 3 4 5 6

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 62

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 63

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 64

Linear hashing - split now?
h0(x) = x mod N (for the un-split buckets)
h1(x) = x mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6 7

C. Faloutsos 15-826

17

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 65

Linear hashing - split now?

split ptr

0 1 2 3 4 5 6 7

this state is called ‘full expansion’

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 66

Linear hashing - observations

In general, at any point of time, we have at most two
h.f. active, of the form:

• hn(x) = x mod (N * 2n)

• hn+1(x) = x mod (N * 2n+1)

(after a full expansion, we have only one h.f.)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 67

Linear hashing - overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 68

Linear hashing - deletion?

•  reverse of insertion:

C. Faloutsos 15-826

18

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 69

Linear hashing - deletion?

•  reverse of insertion:
•  if the underflow criterion is met

–  contract!

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 70

Linear hashing - how to
contract?

h0(x) = mod N (for the un-split buckets)
h1(x) = mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5 6

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 71

Linear hashing - how to
contract?

h0(x) = mod N (for the un-split buckets)
h1(x) = mod (2*N) (for the splitted ones)

split ptr

0 1 2 3 4 5

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 72

Linear hashing - overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

C. Faloutsos 15-826

19

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 73

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

1.01 d.a.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 74

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

1.01 d.a.
??

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 75

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

1.01 d.a.

??

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 76

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

1.01 d.a.
??

C. Faloutsos 15-826

20

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 77

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

1.01 d.a.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 78

Linear hashing - performance

•  [Larson, TODS 1982]
search-time

(avg # of d.a.)

split: if u>u0

 (say u0=.85)

records R 2R

 eg., 1.01 d.a.

 eg., 1.3 d.a.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 79

Linear hashing - overview

•  Motivation
•  main idea
•  search algo
•  insertion/split algo
•  deletion
•  performance analysis
•  variations

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 80

Other hashing variations

•  ‘order preserving’
•  ‘perfect hashing’ (no collisions!) [Ed. Fox,

et al]

C. Faloutsos 15-826

21

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 81

Primary key indexing -
conclusions

•  hashing is O(1) on the average for search
•  linear hashing: elegant way to grow a hash

table
•  B-trees: industry work-horse for primary-

key indexing (O(log(N) w.c.!)

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 82

References for primary key
indexing

•  [Fagin+] Ronald Fagin, Jürg Nievergelt, Nicholas
Pippenger, H. Raymond Strong: Extendible Hashing - A
Fast Access Method for Dynamic Files. TODS 4(3):
315-344(1979)

•  [Fox] Fox, E. A., L. S. Heath, Q.-F. Chen, and A. M.
Daoud. "Practical Minimal Perfect Hash Functions for
Large Databases." Communications of the ACM 35.1
(1992): 105-21.

CMU SCS

15-826 Copyright: C. Faloutsos (2017) 83

References, cont’d

•  [Knuth] D.E. Knuth. The Art Of Computer Programming,
Vol. 3, Sorting and Searching, Addison Wesley

•  [Larson] Per-Ake Larson Performance Analysis of Linear
Hashing with Partial Expansions ACM TODS, 7,4, Dec.
1982, pp 566--587

•  [Litwin] Litwin, W., (1980), Linear Hashing: A New Tool
for File and Table Addressing, VLDB, Montreal, Canada,
1980

