C. Faloutsos 15-826

g CMUSCS

15-826: Multimedia Databases
and Data Mining

Lecture#2: Primary key indexing — B-trees
Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

g CMUSCS

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

15-826 Copyright: C. Faloutsos (2010) 2

g CMUSCS

Problem

Given a large collection of (multimedia)
records, find similar/interesting things, ie:

+ Allow fast, approximate queries, and

* Find rules/patterns

15-826 Copyright: C. Faloutsos (2010)

C. Faloutsos

g CMUSCS

Outline

Goal: ‘Find similar / interesting things’
* Intro to DB

q- Indexing - similarity search

+ Data Mining

15-826 Copyright: C. Faloutsos (2010)

15-826

g CMUSCS

Indexing - Detailed outline

q- primary key indexing

— B-trees and variants

— (static) hashing

— extendible hashing
+ secondary key indexing
* spatial access methods
e text

15-826 Copyright: C. Faloutsos (2010)

B

CMU SCS

In even more detail:

« B —trees

e B+ - trees, B*-trees

* hashing

15-826 Copyright: C. Faloutsos (2010)

C. Faloutsos 15-826

g CMUSCS

Primary key indexing

* find employee with ssn=123

15-826 Copyright: C. Faloutsos (2010) 7

g CMUSCS

B-trees

* the most successful family of index
schemes (B-trees, B™trees, B*-trees)

+ Can be used for primary/secondary,
clustering/non-clustering index.

* balanced “n-way” search trees

15-826 Copyright: C. Faloutsos (2010) 8

g CMUSCS

Citation

* Rudolf Bayer and Edward M.
McCreight, Organization and
Maintenance of Large Ordered
Indices, Acta Informatica,
1:173-189, 1972.

* Received the 2001 SIGMOD innovations award
» among the most cited db publications
swww.informatik.uni-trier.de/~ley/db/about/top.html

15-826 Copyright: C. Faloutsos (2010) 9

C. Faloutsos 15-826

g CMUSCS

B-trees

Eg., B-tree of order 3:

15-826 Copyright: C. Faloutsos (2010) 10

g CMUSCS

B - tree properties:

« each node, in a B-tree of order n:
— Key order
— at most n pointers

— at least n/2 pointers (except root)

— all leaves at the same level

— if number of pointers is £, then node has exactly -/
keys

— (leaves are empty)

pl pn
(vt 2 []

15-826 Copyright: C. Faloutsos (2010) 1

(g CMUSCS

Properties

* “block aware” nodes: each node -> disk
page
O(log (N)) for everything! (ins/del/search)

* typically, if n =50 - 100, then 2 - 3 levels

« utilization >= 50%, guaranteed; on average
69%

15-826 Copyright: C. Faloutsos (2010) 12

C. Faloutsos 15-826

g CMUSCS

Queries

* Algo for exact match query? (eg., ssn=8?)

<s e 40 N
>9

>6 /<9
1 |[3 7 13

15-826 Copyright: C. Faloutsos (2010) 13

g CMUSCS

Queries

 Algo for exact match query? (eg., ssn=8?)

< de He |
>

9
>6 /<9
1|43 7 13
15-826 Copyright: C. Faloutsos (2010) 14

g CMUSCS

Queries

» Algo for exact match query? (eg., ssn=87?)

<6 de He b
>

>6,/ <9 9
1|43 7 13
15-826 Copyright: C. Faloutsos (2010) 15

C. Faloutsos

15-826

g CMUSCS,

Queries

* Algo for exact match query? (eg., ssn=8?)

L1 s]

15-826

Copyright: C. Faloutsos (2010)

g CMUSCS

Queries

 Algo for exact match query? (eg., ssn=8?)

H steps (= disk
accesses)

15-826

Copyright: C. Faloutsos (2010)

g CMUSCS

Queries

* what about range queries? (eg., S<salary<8)

 Proximity/ nearest neighbor searches? (eg.,
salary ~8)

15-826

Copyright: C. Faloutsos (2010)

C. Faloutsos 15-826

g CMUSCS

Queries
« what about range queries? (eg., 5<salary<8)

 Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

o AN
>6 /<9

15-826 Copyright: C. Faloutsos (2010) 19

g CMUSCS

Queries
+ what about range queries? (eg., 5<salary<$)

* Proximity/ nearest neighbor searches? (eg.,
salary ~ 8)

<6 s o
6/<9 >

15-826 Copyright: C. Faloutsos (2010) 20

g CMUSCS

B-trees: Insertion

* Insert in leaf; on overflow, push middle up
(recursively)
* split: preserves B - tree properties

15-826 Copyright: C. Faloutsos (2010) 21

C. Faloutsos 15-826

g CMUSCS

B-trees

Easy case: Tree TO; insert ‘8’

15-826 Copyright: C. Faloutsos (2010) 2

g CMUSCS

B-trees

Tree TO; insert ‘8’

15-826 Copyright: C. Faloutsos (2010) 23

(g CMUSCS

B-trees

Hardest case: Tree TO; insert ‘2’

15-826 Copyright: C. Faloutsos (2010) 24

C. Faloutsos

g CMUSCS

B-trees

Hardest case: Tree TO; insert ‘2’

push middle up

15-826 Copyright: C. Faloutsos (2010)

15-826

g CMUSCS

B-trees

Hardest case: Tree TO; insert ‘2’

Ovf; push middle o Ao |

15-826 Copyright: C. Faloutsos (2010)

/

g CMUSCS
B-trees

Hardest case: Tree TO; insert ‘2’

Final state /EE]:

C. Faloutsos 15-826

g CMUSCS

B-trees: Insertion

* Q: What if there are two middles? (eg, order
4)

e A: either one is fine

15-826 Copyright: C. Faloutsos (2010) 28

g CMUSCS

B-trees: Insertion

* Insert in leaf; on overflow, push middle up
(recursively — ‘propagate split’)

« split: preserves all B - tree properties (!!)

* notice how it grows: height increases when
root overflows & splits

» Automatic, incremental re-organization

15-826 Copyright: C. Faloutsos (2010) 29

g CMUSCS

Overview

« B —trees

— Dfn, Search, insertion, deletion

e B+ - trees

* hashing

15-826 Copyright: C. Faloutsos (2010) 30

10

C. Faloutsos

Deletion
Rough outline of algo:
* Delete key;

 on underflow, may need to merge

In practice, some implementors just allow underflows to
happen...

15-826 Copyright: C. Faloutsos (2010)

15-826

’g CMU SCS
B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

<6 tls 419 |
<9 >9
1 |43 7 13

15-826 Copyright: C. Faloutsos (2010)

g CMU SCS
B-trees — Deletion

Easiest case: Tree TO; delete 3’

<6 tls 410 |
<9 >9
7 13

15-826 Copyright: C. Faloutsos (2010)

11

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

Easiest case: Tree TO; delete ‘3’

Ilﬂl

15-826 Copyright: C. Faloutsos (2010) 34

g CMUSCS

B-trees — Deletion

 Casel: delete a key at a leaf — no underflow

m ¢ Case2: delete non-leaf key — no underflow

* Case3: delete leaf-key; underflow, and ‘rich
sibling’

 Case4: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2010) 35

(g CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &

LI e

HLHL&L”HJ

15-826 Copyright: C. Faloutsos (2010) 36

12

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

Delete &

N\
l'lnl promote, ie:
<9 >9

15-826 Copyright: C. Faloutsos (2010) 37

g CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

~ Delete &
<6 349 promote, ie:

s

15-826 Copyright: C. Faloutsos (2010) 38

(g CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

FINAL TREE
I'lﬂ!

aelaalce

15-826 Copyright: C. Faloutsos (2010) 39

13

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

» Case2: delete a key at a non-leaf — no
underflow (eg., delete 6 from TO)

* Q: How to promote?
+ A: pick the largest key from the left sub-tree
(or the smallest from the right sub-tree)

+ Observation: every deletion eventually
becomes a deletion of a leaf key

15-826 Copyright: C. Faloutsos (2010) 40

g CMUSCS

B-trees — Deletion

» Casel: delete a key at a leaf — no underflow

+ Case2: delete non-leaf key — no underflow

=) « Case3: delete leaf-key; underflow, and ‘rich
sibling’

+ Case4: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2010) 41

(g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

LI, e

HLHL&L”HJ

15-826 Copyright: C. Faloutsos (2010) 42

14

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

<6 Iﬂlnl borrow, ie:
Rich sibling Zo >9
~. >6 —
1|3 : X 13

15-826 Copyright: C. Faloutsos (2010) 43

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’

* ‘rich’ = can give a key, without
underflowing

* ‘borrowing’ a key: THROUGH the
PARENT!

15-826 Copyright: C. Faloutsos (2010) 44

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &
Rich sibling

Iﬂ!nl borrow, ie:
~. 6 /<9 >9

1 |i[3 % 13
1) 4/ \

<6
>

15-826 Copyright: C. Faloutsos (2010) 45

15

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

4
>
<9 9

15-826 Copyright: C. Faloutsos (2010) 46

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

LI, e

HLHL&L”HJ

15-826 Copyright: C. Faloutsos (2010) 47

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

Delete &

LI - e

HLHL&L”HJ

15-826 Copyright: C. Faloutsos (2010) 48

16

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

 Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from TO)

FINAL TREE Delete &

19! 1 N
,

through the
>3 /<9 parent

15-826 Copyright: C. Faloutsos (2010) 49

g CMUSCS

B-trees — Deletion

+ Casel: delete a key at a leaf — no underflow
 Case2: delete non-leaf key — no underflow

Case3: delete leaf-key; underflow, and ‘rich
sibling’

= o Cased: delete leaf-key; underflow, and ‘poor
sibling’

15-826 Copyright: C. Faloutsos (2010) 50

g CMUSCS

B-trees — Deletion

+ Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

HLHL&L”HJ

15-826 Copyright: C. Faloutsos (2010) 51

17

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

<6 flo 419 |
<9 >9

>6

15-826 Copyright: C. Faloutsos (2010) 52

g CMUSCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/
‘poor’ sibling

15-826 Copyright: C. Faloutsos (2010) 53

g CMUSCS

B-trees — Deletion

+ Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

* Merge, by pulling a key from the parent

* exact reversal from insertion: ‘split and push
up’, vs. ‘merge and pull down’

e Je.:

15-826 Copyright: C. Faloutsos (2010) 54

18

C. Faloutsos

g CMUSCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

A: merge w/

<6 ‘poor’ sibling

Lol |}

15-826 Copyright: C. Faloutsos (2010) 55

15-826

g CMUSCS

B-trees — Deletion

 Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from TO)

FINAL TREE
w el

>6
L1l |} 7 o)

15-826 Copyright: C. Faloutsos (2010) 56

g CMU SCS
B-trees — Deletion

 Case4: underflow & “poor sibling’
o > ‘pull key from parent, and merge’
* Q: What if the parent underflows?

15-826 Copyright: C. Faloutsos (2010) 57

19

C. Faloutsos 15-826

g CMUSCS

B-trees — Deletion

 Case4: underflow & “poor sibling’

+ -> ‘pull key from parent, and merge’
Q: What if the parent underflows?
+ A: repeat recursively

15-826 Copyright: C. Faloutsos (2010) 58

g CMU SCS
Overview
« B —trees
* B+ - trees, B*-trees
* hashing
15-826 Copyright: C. Faloutsos (2010) 59

g CMUSCS

B+ trees - Motivation

%t reason - B-tree — print keys in sorted order:

<6 tls 410 |
<9 >9
1 |43 7 13

15-826

Copyright: C. Faloutsos (2010) 60

20

C. Faloutsos

g CMUSCS

B+ trees - Motivation

B-tree needs back-tracking — how to avoid it?

15-826 Copyright: C. Faloutsos (2010) 61

15-826

g CMUSCS

B+ trees - Motivation

2" reason: if we want to store the whole
record with the key — problems (what?)

<6 tls 419 |
<9 >9
1 |43 7 13

15-826 Copyright: C. Faloutsos (2010) 62

Solution: B* - trees
« facilitate sequential ops
* They string all leaf nodes together

« AND

* replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

15-826 Copyright: C. Faloutsos (2010) 63

21

C. Faloutsos 15-826

g CMUSCS
B+ trees
<6 s 4o |
>=6 /<9 =9
1 |[3 6 |7 9 [13
15-826 Copyright: C. Faloutsos (2010) 64

g CMUSCS

B+ trees - insertion

Eg., insert ‘8’

< fls 39 |
>=6 /<9 X~

1 |3 6 |7 9 13

15-826 Copyright: C. Faloutsos (2010) 65

g CMUSCS

Overview

« B —trees

e B+ - trees, B*-trees

* hashing

15-826 Copyright: C. Faloutsos (2010) 66

22

C. Faloutsos 15-826

g CMUSCS

B*-trees

« splits drop util. to 50%, and maybe increase
height

* How to avoid them?

15-826 Copyright: C. Faloutsos (2010) 67

g CMUSCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

< G ENt
% <9 9

15-826 Copyright: C. Faloutsos (2010) 68

g CMUSCS

B*-trees: deferred split!

* Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

FINAL TREE
<3

15-826 Copyright: C. Faloutsos (2010) 69

23

C. Faloutsos 15-826

g CMUSCS

B*-trees: deferred split!

* Notice: shorter, more packed, faster tree
« It’s a rare case, where space utilization and
speed improve together

+ BUT: What if the sibling has no room for
our ‘lending’?

15-826 Copyright: C. Faloutsos (2010) 70

g CMUSCS

B*-trees: deferred split!

+ BUT: What if the sibling has no room for
our ‘lending’?

* A:2-to-3 split: get the keys from the
sibling, pool them with ours (and a key
from the parent), and split in 3.

¢ Details: too messy (and even worse for
deletion)

15-826 Copyright: C. Faloutsos (2010) 71

g CMUSCS

Conclusions

* Main ideas: recursive; block-aware; on
overflow -> split; defer splits

 All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

* B+ tree is the prevailing indexing method

* More details: [Knuth vol 3.] or [Ramakrishnan &
Gehrke, 3rd ed, ch. 10]

15-826 Copyright: C. Faloutsos (2010) 72

24

