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g CMUSCS
Motivation:
(Q1) Find patterns in data

e Motion capture data: broad jumps
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g CMU SCS
Motivation:
(Q1) Find patterns in data

> Take-off

* Human would say -

— Pattern 1: along -
diagonal £
— Pattern 2: along i
vertical axis il
e How to find these =
automatically? o
Each point is the measurement
at a time tick (total 550 points).
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Motivation:
(Q2) Find hidden variables

Stock prices Hidden variables

Alcoa

American |
“General trend”

Express

Bocing

Citi Group "

‘ “Internet bubble”
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Motivation:
(Q2) Find hidden variables
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“General trend” Hidden variables “Internet bubble”
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Motivation:
(Q2) Find hidden variables
<a gk 2y M
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Hidden variable 1 Hidden variable 2
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Motivation:
Find hidden variables

¢ There are two sound sources in a cocktail party...
— 9
) }
/ -
L)

Also called the “blind source separation” problem.
“Blind” because we don’t know the sources,
nor how they are mixed.
(c) C. Faloutsos and J-Y Pan (2007)
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Formulation: Finding patterns

RightKneo
x
Rightneo

e & (okneo "
Given n data points, Find patterns that describe
each with m attributes. data properties the best.
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Linear representation

A dy

hioba

dy

* Find patterns that are vectors that describe the data set the best.
» Each point is described as a linear combination of the vectors

(patterns): - — —
X; =h;b, +h;,b,
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Patterns as data ‘“‘vocabulary”

o dy

Good pattern
=~ sparse coding

= o d Only b, is needed
4————+———% % to describe x;.

(a) [CA representation of X;
Ki=hi 1 b1+hi2b)

(Q) Given data x;’s,
compute h;;'s and b/'s that are “sparse”?
15-826 (¢) C. Faloutsos and J-Y Pan (2007) #12




CMUSCS

Patterns in motion capture data

Sparse ~ non-Gaussian

: . O X ~ “Independent”
o 7 * o Left  Right
s . P -
[ Xy X, hy o hy, |
H
. X1 Xan hy hyy e
i : N P R 7-31 - X
. H Y
T el | : SR Il P -
™ / : : : :
A
//? X RISEY _hn,l hn‘Z_
X2 = HpBoys
n=550 ticks Data_ Higlden Basis
matrix variables  vectors
“Independent”: e.g., minimize mutual information.
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Basis vectors and hidden variables

* Goal: Knowing X, find H and B, where
X=HB

* Problem: Under-constrained
— Need additional assumptions/constraints

X: data set
H: hidden variables
B: basis vectors
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PCA and ICA

dg

PCA Vectors ICA Vectors
* PCA vectors: major variations
— Together = good “low-rank approximation”/dimensional reduction
— Individually # meaningful patterns
* Luckily, ICA detects the major meaningful patterns.
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PCA

* PCA (Principal Component Analysis)
— Choose vectors which are orthonormal and

— give smallest representation L2 error for
dimensional reduction

* Matrices H and B can be solved by

— SVD, neural networks, or many optimization
methods
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PCA

» Extremely popular
— Latent Semantic Indexing [Deerwester+90]
— KL transform [Duda,Hart,Stork00]
— EigenFace [Turk,Pentlend91]

— Multiple time series correlation
[Guha,Gunopulos,Koudas03]

* But, there is room for improvement.

15-826 (¢) C. Faloutsos and J-Y Pan (2007) #18




g CMUSCS

ICA

* ICA (Independent Component Analysis)
— Make hidden variables 4i’s (columns of H)
mutually independent.
* Many implementations
— Many ways to define “independence”
— Many ways to find the most independent H.
— (B is found at the same time, since X=HB.)
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ICA

* Define “Independence”: p(h;,h;) = p(h)p(h;)
— Zero mutual information
— Non-Gaussianity, max. absolute Kurtosis

e To solve for H,B:

— Neural networks, optimization methods
(gradient ascent, fixed-point, ...)
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An non-gaussian distribution:
Laplacian pdf

P(x) =%exp(—/ﬂx‘)

Sharper at 0,
and more heavy tail
than Gaussian pdf
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Maximizing non-gaussianity
* Assume /; ~ non-gaussian pdf (e.g. Laplacian pdf)
— Fixed h; values, what is the most likely “B” ?

* (data point x is given and fixed)
— Find B, s.t. likelihood P(xIB) is maximized.

x=hB
P(h)
det(B)
wieion ) = Priicon GB™)
Puapcn $B)
det(B)
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= P(XIB) =
P(h)=P,

= P(X|B) =

% CMUSCS

Maximize likelihood

* Likelihood P(xIB) is a function of B, f(B)
¢ Gradient ascent
— To find B which maximizes P(xIB)

a

f(B) /
s LN
S
~ B*
> B
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ICA by maximum likelihood

\
/—-z = —sign(H) \

ABO-B"Z"H -nB"
H _ B
B=B+e\B

‘\_/

H=XB™"
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Convergence of ICA

cA P oA AP =
= ICA
Start with the matrix B as
an identity matrix.
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Pattern discovery with ICA: AutoSplit

[PAKDD 04][WIRI 05]
(Q) Different

(¢) C. Faloutsos and J-Y Pan (2007)

Video frames modalities
— =P Step 1:
Data points (matrix)
or
Stock prices / Step 2: (Q) What
L i Compute patterns | pattern?
= = or
Step 3: 2
Interpret patterns (Q) How?
Text documents
sg an Data mining
(Case studies)
15-826
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Finding patterns in high-
, dimensional data

o i,c
o Al
Dirn.ensionality ’ g

reduction

PCA finds the hyperplane. ICA finds the correct patterns.
15-826
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Topic discovery on text streams

¢ Data: CNN headline news (Jan.-Jun. 1998)

Documents of 10 topics in one single text
stream

— Documents are sorted by date/time

— Subsequent documents may have different
topics

Topic 1 Topic 3

[—
Topic 1

Date/Time

>

15-826 (¢) C. Faloutsos and J-Y Pan (2007)
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Topic discovery on text streams

* Known: number of topics = 10

* Unknown: (1) topic of each document (2)
topic description

| — | — | —
Topic 1 Topic 3 ces Topic 1
Date/Time
>
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Topic discovery in documents

Step 1 < N
p - 2° 0
—Xo—
% [:> : x=[1,5,...,0]
Windowing X,
. (n=1659)
New stories (30 words) [nxm]

m=3887 (dictionary size)
\

Step 2 Step 3 < —

S @
X, = H ‘_, o &5 o
toxm] = T 1 [ : ] b =1[0.07, ..., 0.6]

(1) Find hyperplane ~bu -
(m=10)
(2) Find patterns (Q) What does b’; mean?
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Step 3: Interpret the patterns

N >
. S
—b,- P r&\\«\ 1

7"517 I:> b,=[0,0.7, ..., 0.6] |:> Top words : “animal”, “z00”, ...

“byy A hidden topic!
m=3887 (dictionary size)
) Sorted word list
A | Mckinne | Sergeant | sexual Major Armi
Topics B | bomb Rudolph Clinic Atlanta Birmingham
found C | Winfrei Beef Texa Oprah Caul
D_| Viagra Drug Impot Pill Doctor
E Zamora Graham Kill Former Jone
General idea: related to the data attributes
H | Asia Economi Japan Econom Asian
1| Super Bowl Game Team Re
15-826 J | Peopl Tornado Florida | Re bomb

11
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Step 3: Evaluate the patterns

ID | True Topic
1 | Sgt. Gene Mckinney is on trial for alleged sexual misconduct
2 | Abomb explodes in a Birmingham, AL abortion clinic
3 | The Cattle Industry in Texas sues Oprah Winfrey for defaming beef
4 | New impotency drug Viagra is approved for use
5 | Diane Zamora is convicted of helping to murder her lover’s girlfriend
1D Sorted word list
A | mckinne |sergeant | sexual major armi
B | bomb rudolph clinic atlanta birmingham
C | winfrei beef texa oprah cattl
D | viagra drug Impot pill doctor
E | zamora graham kill former jone
. AutoSplit finds correct topics. s
CMUSCS

Step 3: Evaluate the patterns

D AutoSplit
A | mckinne | sergeant |sexual | major armi
B | bomb rudolph clinic atlanta birmingham
C | winfrei beef texa oprah cattl
D | viagra drug Impot pill doctor
E | zamora graham kill former jone
ID PCA
A’ | mckinne | bomb women | sexual sergeant
B’ | bomb mckinne | rudolph | clinic atlanta
C’ | winfrei viagra texa beef oprah
D’ | viagra winfrei drug texa beef
E’ | zamora viagra winfrei | graham olymp
AutoSplit’s topics are better than PCA.
15-826 (¢) L. FI0UISOS aNa J-Y ran (Z0u7) #35
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Step 3: Evaluate the patterns

AutoSplit
2 i Topic 1
c 4
D Topic 2
- i
PCA b

A 4
B B 4
c 3
D ‘ PCA vectors mix the topics. ‘
I

AutoSplit’s topics are better than PCA.
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— Find topics in documents
m) — Hidden variables in stock prices
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* Conclusion
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Find hidden variables (DJIA stocks)

* Weekly DJIA closing prices
- 01/02/1990-08/05/2002, n=660 data points

— A data point: prices of 29 companies at the time
Alcoa

American
Express

Boeing

Caterpillar

Citi Group
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Formulation: Find hidden variables

[AA4, ..., XOM1] Hui| Hi2, ..., Him|[B11, B12, ..., Bim

0 |- 2

ml, Bm2, ceey Bmmn|

_AAn, ceey XOMn_ Hni, Hn2, coey Hun|

Date Hidden variable

o P
o

v o Date

ol
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Characterize hidden variable by
the companies it influences

CAT

@)

e

e e
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Caterpillar

B1,cAT ==
B1,INTC==

!
-0.94

RO WO WG WG 95 W93 WY G WG M0 2001 200

Intel

15-826

“General trend”

“Internet bubble”

(¢) C. Faloutsos and J-Y Pan (2007)
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Companies related to hidden variable 1

Bi;
Highest Lowest

Caterpillar 0.938512 AT&T 0.021885
Boeing 0.911120 WalMart 0.624570
MMM 0.906542 Intel 0.638010
Coca Cola 0.903858 Home Depot 0.647774
Du Pont 0.900317 Hewlett-Packard | 0.658768
| o -

i) W W W

e “General trend”

15-826 (c) C. Faloutsos and J-Y Pan (2007) #41
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Companies related to hidden variable 1
Bi
Highest Lowest
Caterpillar 0.938512 AT&T 0.021885
Boeing 0.911120 ‘WalMart 0.624570
MMM 0.906542 Intel 0.638010
Coca Cola 0.903858 Home Depot 0.647774
Du Pont 0.900317 Hewlett-Packard | 0.658768
All companies are affected by the “general trend”
variable (with weights 0.6~0.9), except AT&T.
15-826 (c¢) C. Faloutsos and J-Y Pan (2007) #42
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General trend (and outlier)
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Companies related to hidden variable 2

B2

~—_ ~lighest Lowest
Intel \ 0.641102 Philip Morris -0.194843
Hewlett-Packard )0.621 159 International Paper | -0.089569
GE /| 0509164 Caterpillar 0.031678
Alpican ExprSs | 0.504871 Procter and Gamble | 0.109576
/Disney 0.490529 Du Pont 0.133337

-

A
iy
e i Y u~w4“\’_,-"";«'-""I e

W

2000-2001 “Internet bubble”
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Companies related to hidden variable 2

B2,
/ \H'{ghesl Lowest
Intel Yos41102 Philip Morris -0.194843
Hewlett-Packard .621159 International Paper | -0.089569
GE 0.509164 Caterpillar 0.031678
Am‘m Express | 0.504871 Procter and Gamble | 0.109576
/ Disney 0.490529 Du Pont 0.133337

Tech company

Companies affected by the “internet bubble” variable
(with weights 0.5~0.6) are tech-related.
Other companies are un-related (weights < 0.15).
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Outline
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* Formulation

PCA and ICA

» Example applications

— Find topics in documents
— Hidden variables in stock prices
m) — Visual vocabulary for retinal images
* Conclusion
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Mining cat retinal images ucomos
Retina

Detachment Development

Normal 1 day after 7 days after 28 days after
detachment detachment detachment

Treatment

1h3dr 28dr
15-826 3d (c) C. Faloutso, ?f.ju 487(.1 + an (2007)

1d6dO, r

;g CMUSCS
“Vocabulary” for biomedical images?

* How to describe biomedical images?
* Analogy: the topics for text

* Football reports: “touchdown”, “punt”, etc.

B

o

* DB papers: “query”, “optimization”, etc.

» How to derive “visual vocabulary terms”?

“spongy”
Normal 7 days after pongy
detachment
15-826 () C. Faloutsos and J-Y Pan (2007) #43
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= ‘Visual Vocabulary (ViVo) by

AutoSplit
B

Visual

V()Cabumry . . .

Step 3:
Step 1: ViVo
8x12 tiles Tile image generation
Step 2: 9
. g \%!
Extract tile £
3 &
features o V2
—) o
Feature 1
(¢) C. Faloutsos and J-Y Pan (2007) #49
% CMU SCS
Finding ViVos
= ICA H
=== PCA : P2
E
o
o
o
o
1ol
i
=) 15 10 - o ) E)
PC1
R Red lines indicate ViVos.
Each point is a tile.
Projected to the 1st and 2nd PCA vectors.
(Feature vector: 512 color structure
features.)
15826 (¢) C. Faloutsos and J-Y Pan (2007) #50
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Bio-mining with “ViVo”

% Visual Vocabulary for retinal images
— using AutoSplit
. Evaluation
— Qualitative: biological meanings of ViVos

— Data mining: highlight “interesting” regions

15-826 (¢) C. Faloutsos and J-Y Pan (2007) #51
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Biological interpretation of ViVos

ID Description Condition
V1 GFAP in inner retina (Miiller cells) | Healthy
Healthy outer segments of rod
V1o photoreceptors Healthy
Redistribution of rod opsin into cell
AL bodies of rod photoreceptors Detached
Co-occurring processes: Miiller cell
Vi1 hypertrophy and rod opsin Detached
redistribution
15-826 (¢) C. Faloutsos and J-Y Pan (2007) #52

% CMUSCS

Biological interpretation of ViVos

D ViVo Description | Condition D ViVo

GFAP in

hypertrophy | al changes in 6
Miller cells | inner retina

Morphologic

GFAP in Morphologic

3 hypertrophy | al changes in 7
Miiller cells inner retina
GFAP in Morphologic

4 hypertrophy | al changes in 9
Miiller cells inner retina
Healthy outer
segments of

5 rod Healthy 12

photoreceptors
rod opsin)

(0 C- Faloutsos and 1Y Pan (2007)

Description Condition

Rod Background
photoreceptor labcl;ng

cell body

GFAP in Morphologica
hypertrophy | 1 changes in
Miiller cells | inner retina

Outer segment
degeneration Detached
(rod opsin)

GFAP in Morphologica
hypertrophy | 1 changes in
Miiller cells | inner retina

#53
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Bio-mining with “ViVo”

/Visual Vocabulary for retinal images

— using AutoSplit

e Evaluation

/ Qualitative: biological meanings of ViVos

. Data mining: highlight “interesting” regions

15-826

(¢) C. Faloutsos and J-Y Pan (2007)
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Finding “distinguishing ViVos”
* Given: Images of two classes

— Find the class-distinguishing ViVo (“DiVo”)
— Highlight distinguishing regions

Normal

Detached 3 days

15-826 (¢ DiVo: “spongy” 007) #55
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Summary: a system viewpoint
-

Input Output

~a

Our

A system

V8: “spongy”

Left: “n”; Right: “3d”

-2
/'
Accurate classification (2) Regions shown (V8):
“cells of rod photoreceptors”
| (3) Description:
/ “Detachment occurs!”

DiVo analysis

ViVo interpretation

“Rod opsin distributes from

15-826 (c) C. Faloutsos and J-Y Pan (2007) #56

outer segment into cell bodies.”

;g CMUSCS
Outline

* Motivation

* Formulation

PCA and ICA

* Example applications

— Find topics in documents
— Hidden variables in stock prices
— Visual vocabulary for retinal images

mp- Conclusion

15-826 (¢) C. Faloutsos and J-Y Pan (2007) #57
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Conclusion
e ICA: more flexible than PCA in finding
patterns.
* Many applications
— Find topics and “vocabulary” for images

— Find hidden variables in time series (e.g., stock
prices)
— Blind source separation

15-826 (¢) C. Faloutsos and J-Y Pan (2007) #58

CMU SCS

Vocabulary for embryo gene expressions

Vocabulary

YT

Fo\

with André BaIan Christos Faloutsos, Eric P. Xing
15-826 L L@IUUBUS U T L LA EuUT ) #59
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Independence
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Non-Gaussianity and Independence
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% CMU SCS
Non-Gaussianity and
Independence

S2 r2
L S1 R r1
Independent Dependent

15-826 (c) C. Faloutsos and J-Y Pan (2007)
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Non-Gaussianity and Independence

P(sl) - P(rl) ~
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