15-826: Multimedia Databases and Data Mining

Primary key indexing – B-trees

Christos Faloutsos - CMU
www.cs.cmu.edu/~christos

Problem

Given a large collection of (multimedia) records, find similar/interesting things, ie:

- Allow fast, approximate queries, and
- Find rules/patterns

Outline

Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search
- Data Mining
Indexing - Detailed outline

- primary key indexing
 - B-trees and variants
 - (static) hashing
 - extendible hashing
- secondary key indexing
- spatial access methods
- text
- ...

Primary key indexing

- find employee with ssn=123

B-trees

- the most successful family of index schemes (B-trees, B⁺trees, B⁻trees)
- Can be used for primary/secondary, clustering/non-clustering index.
- balanced “n-way” search trees
Citation

- Received the 2001 SIGMOD innovations award
- among the most cited db publications
 www.informatik.uni-trier.de/~ley/db/about/top.html

B-trees

Eg., B-tree of order 3:

```
<6  6   9   >9
1  5   7   13
```

B - tree properties:

- each node, in a B-tree of order \(n \):
 - Key order
 - at most \(n \) pointers
 - at least \(n/2 \) pointers (except root)
 - all leaves at the same level
 - if number of pointers is \(k \), then node has exactly \(k-1 \) keys
 - (leaves are empty)
Properties

- "block aware" nodes: each node -> disk page
- $O(\log(N))$ for everything! (ins/del/search)
- typically, if $m = 50 - 100$, then 2 - 3 levels
- utilization $\geq 50\%$, guaranteed; on average 69%

Queries

- Algo for exact match query? (eg., ssn=8?)

$<6 \quad \quad 6 \quad 9 \quad >9$

$1 \quad 3 \quad 7 \quad 13$

$<6 \quad \quad 6 \quad 9 \quad >9$

$1 \quad 3 \quad 7 \quad 13$
Queries

• Algo for exact match query? (eg., ssn=8?)

H steps (= disk accesses)
Queries

- what about range queries? (eg., \(5 < \text{salary} < 8\))
- Proximity/ nearest neighbor searches? (eg., \(\text{salary} \sim 8\))

Queries

- what about range queries? (eg., \(5 < \text{salary} < 8\))
- Proximity/ nearest neighbor searches? (eg., \(\text{salary} \sim 8\))

Queries

- what about range queries? (eg., \(5 < \text{salary} < 8\))
- Proximity/ nearest neighbor searches? (eg., \(\text{salary} \sim 8\))
B-trees: Insertion

- Insert in leaf; on overflow, push middle up (recursively)
- split: preserves B-tree properties

B-trees

Easy case: Tree T0; insert '8'

```
<6  6  9
1  3  7  13
```

B-trees

Tree T0; insert '8'

```
<6  6  9
1  3  7  8  13
```
B-trees

Hardest case: Tree T0; insert ‘2’

push middle up

Ovf; push middle

B-trees

Hardest case: Tree T0; insert ‘2’
B-trees

Hardest case: Tree T0; insert ‘2’

Final state

B-trees: Insertion

• Q: What if there are two middles? (eg, order 4)
 • A: either one is fine

B-trees: Insertion

• Insert in leaf; on overflow, push middle up (recursively – ‘propagate split’)
• split: preserves all B-tree properties (!!)
• notice how it grows: height increases when root overflows & splits
• Automatic, incremental re-organization
Overview

- B – trees
 - Dfn, Search, insertion, deletion
- B+ - trees
- hashing

Deletion

Rough outline of algo:
- Delete key:
- on underflow, may need to merge

In practice, some implementors just allow underflows to happen…

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’
B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

- Case1: delete a key at a leaf – no underflow
- Case2: delete non-leaf key – no underflow
- Case3: delete leaf-key; underflow, and ‘rich sibling’
- Case4: delete leaf-key; underflow, and ‘poor sibling’
B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

1. Locate the key 6.
2. Since 6 is at a non-leaf, no underflow occurs.
3. Delete 6 and adjust the pointers.

Delete & promote, i.e.:
B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

Final Tree

- 3
- 9
- 13
- 7
- 3
- 9
- 1

B-trees – Deletion

• Case 2: delete a key at a non-leaf – no underflow (e.g., delete 6 from T0)

 • Q: How to promote?
 • A: pick the largest key from the left sub-tree (or the smallest from the right sub-tree)

 • Observation: every deletion eventually becomes a deletion of a leaf key

B-trees – Deletion

• Case 1: delete a key at a leaf – no underflow
• Case 2: delete non-leaf key – no underflow
• Case 3: delete leaf-key; underflow, and ‘rich sibling’
• Case 4: delete leaf-key; underflow, and ‘poor sibling’
B-trees – Deletion

• Case 3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

- 'rich' = can give a key, without underflowing
- ‘borrowing’ a key: THROUGH the PARENT!

Rich sibling

\begin{itemize}
 \item Case 3: underflow & 'rich sibling' (eg., delete 7 from T0)
\end{itemize}
B-trees – Deletion

- Case 3: underflow & ‘rich sibling’ (e.g., delete 7 from T0)

Delete & borrow, i.e:

1. 1 3
2. 6 9
3. 13
B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

15-826 Copyright: C. Faloutsos (2007) 46

B-trees – Deletion

• Case3: underflow & ‘rich sibling’ (eg., delete 7 from T0)

15-826 Copyright: C. Faloutsos (2007) 47

B-trees – Deletion

• Case1: delete a key at a leaf – no underflow
• Case2: delete non-leaf key – no underflow
• Case3: delete leaf-key; underflow, and ‘rich sibling’
• Case4: delete leaf-key; underflow, and ‘poor sibling’

15-826 Copyright: C. Faloutsos (2007) 48
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

15-826 Copyright: C. Faloutsos (2007)
B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

• Merge, by pulling a key from the parent
• exact reversal from insertion: ‘split and push up’, vs. ‘merge and pull down’
• I.e.:

B-trees – Deletion

<6
6
1 3
>6
7 9

A: merge w/ ‘poor’ sibling

B-trees – Deletion

• Case 4: underflow & ‘poor sibling’ (eg., delete 13 from T0)

FINAL TREE

<6
6
1 3
>6
7 9
B-trees – Deletion

- Case 4: underflow & ‘poor sibling’
- => ‘pull key from parent, and merge’
- Q: What if the parent underflows?

- A: repeat recursively

Overview

- B – trees
- B+ - trees, B*-trees
- hashing
B+ trees - Motivation

B-tree – print keys in sorted order:

```
<6       6 9       >9
 1 5       7 13
```

B+ trees - Motivation

B-tree needs back-tracking – how to avoid it?

```
<6       6 9       >9
 1 5       7 13
```

Solution: B⁺ - trees

- facilitate sequential ops
- They string all leaf nodes together
- AND
- replicate keys from non-leaf nodes, to make sure every key appears at the leaf level
B+ trees

B+ trees - insertion

Overview

- B – trees
 - B+ - trees, B*-trees
 - hashing
B*-trees

- splits drop util. to 50%, and maybe increase height
- How to avoid them?

B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling!
 (through PARENT, of course!)

[Diagram showing deferred splitting]

B*-trees: deferred split!

- Instead of splitting, LEND keys to sibling!
 (through PARENT, of course!)

[Diagram showing deferred splitting with additional keys]
B*-trees: deferred split!

- Notice: shorter, more packed, faster tree
- It’s a rare case, where space utilization and speed improve together
- BUT: What if the sibling has no room for our ‘lending’?

B*-trees: deferred split!

- BUT: What if the sibling has no room for our ‘lending’?
- A: 2-to-3 split: get the keys from the sibling, pool them with ours (and a key from the parent), and split in 3.
- Details: too messy (and even worse for deletion)

Conclusions

- Main ideas: recursive; block-aware; on overflow -> split; defer splits
- All B-tree variants have excellent, $O(\log N)$ worst-case performance for ins/del/search
- B+ tree is the prevailing indexing method
- More details: [Knuth vol 3.] or [Ramakrishnan & Gehrke, 3rd ed, ch. 10]