

Classifiers - outline

Case study: ‘Interval Classifier’ ('IC')

- recent developments and variations

Tree Classifiers - 'IC'

Proposed method: use classification tree, but

- split a range (= num. attribute) into k sub-ranges, as opposed to just 2
- do 'dynamic pruning' (ie., don’t expand a node that is fairly homogeneous)

Tree Classifiers - 'IC’

- "strong" interval: = homogeneous (or close enough)
- k : depends on \# of distinct values
- 'interval' = 'range' for a continuous attribute;
- 'interval' = 'value' for a categorical one
- histograms: equi-width

Classification accuracy: comparable to standard algorithms (ID3, C4)

Classifiers - outline

- Case study: 'Interval Classifier' ('IC')
newer developments and variations

cmuscs

Classifiers - newer methods

Goal: how to make build decision trees, when the training set does not fit in memory

SLIQ: use vertical partitioning (att-value, record-id) for each attribute; keep the (label, record-id) list in main memory
SPRINT: like SLIQ, but attach 'label' on each attribute list: (attr-value, label, record-id)

Association rules - outline

Main idea [Agrawal+SIGMOD93]

- performance improvements
- Variations / Applications
- Follow-up concepts

Data Mining - Detailed outline

- Statistics
- AI - decision trees
- DB
- data warehouses; data cubes; OLAP
- classifiers
\square - association rules
- misc. topics:
- reconstruction of info
- network databases; time sequence forecasting

15-826
opyright: C. Faloutsos (2006)

Association rules - idea

[Agrawal+SIGMOD93]

- Consider 'market basket' case:
(milk, bread)
(milk)
(milk, chocolate)
(milk, bread)
- Find 'interesting things', eg., rules of the form: milk, bread -> chocolate I 90%

15-826

Association rules - idea

Problem definition:

- given
- a set of 'market baskets' (=binary matrix, of N
rows/baskets and M columns/products)
- min-support ' s ' and
- min-confidence 'c'
- find
- all the rules with higher support and confidence

Association rules - idea

Anti-monotonicity property:
if an itemset fails to be 'large', so will every superset of it (hence all supersets can be pruned)

Sketch of the (famous!) 'a-priori' algorithm
Let $L(i-1)$ be the set of large itemsets with $i-1$ elements
Let $C(i)$ be the set of candidate itemsets (of size i)

Association rules - outline

- Main idea [Agrawal+SIGMOD93]
- performance improvements
- Variations / Applications
- Follow-up concepts

3
 Association rules improvements

- Use the independence assumption, to secondguess large itemsets a few steps ahead
- eliminate 'market baskets', that don't contain any more large itemsets
- Partitioning (eg., for parallelism): find 'local large itemsets', and merge.
- Sampling
- report only 'maximal large itemsets' (dfn?)
- FP-tree (seems to be the fastest)

Association rules improvements

- FP-tree: no candidate itemset generation - only two passes over dataset
- Main idea: build a TRIE in main memory

Specifically:

- first pass, to find counts of each item - sort items in decreasing count order
- second pass: build the TRIE, and update its counts
(eg., let A,B, C, D be the items in frequency order:)

15-826
Copyright: C. Faloutsos (2006)

Association rules improvements

- Traversing the TRIE, we can find the large itemsets (details: in [Han+Kamber, §6.2.4])
- Result: much faster than 'a-priori' (order of magnitude)

[^0]

Associations rules vs. correlation.
Motivation: if
milk, bread
is a 'large itemset', does this means that there is a positive correlation between 'milk' and 'bread' sales?

[^0]: $35^{\text {cmuscs }}$

 ## Association rules - variations

 1) Multi-level rules: given concept hierarchy

 - 'bread', 'milk', 'butter'-> foods;
 - 'aspirin', 'tylenol' -> pharmacy
 look for rules across any level of the hierarchy, eg
 'aspirin' -> foods
 (similarly, rules across dimensions, like 'product',
 'time', 'branch':
 'bread', '12noon', 'PGH-branch' -> 'milk'

 15-826

