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PART 2:

PageRank, HITS, and

eigenvalues
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

Part 3: Influence, communities
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Part 2: PageRank, HITS and

eigenvalues

• How important is a node?

• Who is the best customer to advertise to?
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank

• SVD and HITS

Part 3: influence, virus prop., communities
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Motivating problem

Given a graph, find its most interesting/central
node
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Motivating problem

Given a graph, find its most interesting/central
node

A node is important,

if it is connected 

with important nodes

(recursive, but OK!)
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Motivating problem – pageRank

solution
Given a graph, find its most interesting/central

node

Proposed solution: Random walk; spot most
‘popular’ node (-> steady state prob. (ssp))

A node has high ssp,

if it is connected 

with high ssp nodes

(recursive, but OK!)
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Notational conventions

• bold capitals -> matrix (eg. A, U, ΛΛΛΛ, V)

• bold lower-case -> column vector (eg., x, v1,
u3)

• regular lower-case -> scalars (eg., λ1 , λr )
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(Simplified) PageRank

algorithm
• Let A be the transition matrix (= adjacency

matrix); let M= AT and column-normalized - then
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(Simplified) PageRank

algorithm
• M p = p
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(Simplified) PageRank

algorithm
• M p = 1 * p

• thus, p is the eigenvector that corresponds to

the highest eigenvalue (=1, since the matrix is

column-normalized)
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(Simplified) PageRank

algorithm
• In short: imagine a particle randomly

moving along the edges

• compute its steady-state probabilities (ssp)

Full version of algo:  with occasional random

jumps – see later
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Formal definition

If M is a (n x n) square matrix

(λ , x) is an eigenvalue/eigenvector pair

of M if

                     M x = λ x
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(Published) PageRank

• Do a random walk, but

• with probability c, fly-out to a random node

• Then, the ssp vector  v obeys:
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(Published) PageRank

1vMv
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(Published) PageRank
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n x 1

ssp

fly-out

probability

column-normalized

to-from adjacency matrix

number of nodes

vector

full of ‘ones’
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

ssp, when

we restart from node ‘i’
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

ssp, when

we restart from node ‘i’

0

…
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0

…

i-th row
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Personalized PageRank

• [Haveliwala+]

iii ecc
rrr

**)1( +×−= vMv

1vMv
rrr

*/*)1( ncc +×−= original

new
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Personalized PageRank

• [Haveliwala+]

• then si,j = prob( a random walker with

restarts from node i, will find itself at node

j)

iii ecc
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Our wish list:

• How important is a node?

• Who is the best customer to advertise to?

ssp values answer these questions
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank

• SVD and HITS

Part 3: influence,  virus prop., communities
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Kleinberg’s algorithm (‘HITS’)

• Problem dfn: given the web and a query

• find the most ‘authoritative’ web pages for

this query
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Kleinberg’s algorithm

• give high score (= ‘authorities’) to nodes

that many important nodes point to

• give high importance score (‘hubs’) to nodes

that point to good ‘authorities’)

hubs authorities
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Kleinberg’s algorithm

Observations

• recursive definition!

• each node (say, ‘i’-th node) has both an

authoritativeness score ai and a hubness

score hi
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Kleinberg’s algorithm

Let A be the adjacency matrix:

the (i,j) entry is 1 if the edge from i to j exists

Let h and a be  [n x 1] vectors with the

‘hubness’ and ‘authoritativiness’ scores.

Then:
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Kleinberg’s algorithm

In conclusion, we want vectors h and a such

that:

h = A a

  a = AT h

That is:

   a = ATA a
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Kleinberg’s algorithm

a is a right- singular vector of the adjacency
matrix A (by dfn!)

   == eigenvector of ATA
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SVD & HITS

• A = U ΛΛΛΛ VT - example:

u1: hubness scores

v1: author. scores
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Conclusions

eigenvalues/eigenvectors: vital for

• PageRank,

• (virus propagation - coming up next!)

• (graph partitioning - not mentioned here)
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Conclusions, cont’d

SVD

• closely related: HITS/Kleinberg

• (and also LSI, KLT, PCA, Least squares, ...)

Both are extremely useful, well understood

tools for graphs / matrices.
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PART 3:

Influence, virus

propagation,

communities
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Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank

• SVD and HITS

Part 3: influence, virus prop., communities
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Problem definition

• Q1: How does a virus spread across an

arbitrary network?

• Q2: will it create an epidemic?
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Framework

• Susceptible-Infected-Susceptible (SIS)

model

– Cured nodes immediately become susceptible

Susceptible/

healthy

Infected

&

infectious

Infected by neighbor

Cured

internally
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The model

• (virus) Birth rate  β: probability than an

infected neighbor attacks

• (virus) Death rate δ: probability that an

infected node heals

Infected

Healthy

NN1

N3

N2

Prob. ß

Prob. ß

Prob. δδδδ
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The model

• Virus ‘strength’ s= β/δ

Infected

Healthy

NN1

N3

N2

Prob. ß

Prob. ß

Prob. d
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Other models:

• SIR: Susceptible - infected & infectious -

recovered/removed

– eg., mumps, chickenpox; black plague
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Other models:

• and many more:

• SEIR: Susceptible; Exposed (= infected, but

not infectious yet); I; R

• variations:

– M: passively immune, like infants

– with births/newcomers

– ...
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Epidemic threshold ττττ

of a graph, defined as the value of τ, such that

if   strength s = β / δ <  τ

an epidemic can not happen

Thus,

• given a graph

• compute its epidemic threshold
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Epidemic threshold ττττ

What should τ depend on?

• avg. degree? and/or highest degree?

• and/or variance of degree?

• and/or third moment of degree?
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Epidemic threshold

• [Theorem] We have no epidemic, if

β/δ <τ = 1/ λ1,A
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Epidemic threshold

• [Theorem] We have no epidemic, if

β/δ <τ = 1/ λ1,A

largest eigenvalue

of adj. matrix A
attack prob.

recovery prob.
epidemic threshold

Proof: [Wang+03]
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Experiments (Oregon)
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Our wish list:

• Who is the best person/computer to

immunize against a virus?
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Our wish list:

• Who is the best person/computer to

immunize against a virus? Highest diff in λ1



9

15-826 Copyright: C. Faloutsos (2006) #49

CMU SCS

Outline

Part 1: Topology, ‘laws’ and generators

Part 2: PageRank, HITS and eigenvalues

• Eigenvalues and PageRank

• SVD and HITS

Part 3: influence, virus prop., communities
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Graph clustering & mining

• Q1: which edges/nodes are ‘abnormal’?

• Q2: split a graph in k ‘natural’ communities

- but how to determine k?
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites

• Q: HOW MANY

PIECES?
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Graph partitioning

• Documents x terms

• Customers x products

• Users x web-sites

• Q: HOW MANY

PIECES?

• A: MDL/ compression
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Cross-associations

1x2
2x2
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Cross-associations

2x3 3x3 3x4
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Cross-associations
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Cross-associations

15-826 Copyright: C. Faloutsos (2006) #58

CMU SCS

Graph clustering & mining

• Q1: which edges/nodes are ‘abnormal’?

• Q2: split a graph in k ‘natural’ communities

- but how to determine k?

• A2: choose the k that leads to best overall

compression (= MDL = Minimum

Description Language)
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Cross-associations

outlier edgemissing edge
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Conclusions

• virus propagation: eigenvalue determines

the epidemic threshold (SIS model)

• communities/graph partitioning: MDL
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Resources: Software and urls

• SVD packages: in many systems (matlab,

mathematica, LINPACK, LAPACK)

• stand-alone, free code: SVDPACK from

Michael Berry

http://www.cs.utk.edu/~berry/projects.html
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Books

• Faloutsos, C. (1996). Searching Multimedia

Databases by Content, Kluwer Academic Inc.

• Jolliffe, I. T. (1986). Principal Component

Analysis, Springer Verlag.
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Books

• [Press+92] William H. Press, Saul A. Teukolsky,

William T. Vetterling and  Brian P. Flannery:

Numerical Recipes in C,   Cambridge University

Press, 1992, 2nd Edition. (Great description,

intuition and code for SVD)
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Discussion

A lot of recent interest - topics we didn’t

cover:

• Relational learning, e.g., [David Jensen;

Daphne Koller; Saso Dzeroski]

• Frequent sub-graphs, e.g., [Jiawei Han, Jian

Pei; George Karypis, Vipin Kumar;

Mohammed Zaki]
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Discussion cont’d

• Graph partitioning, e.g., [METIS (Karypis)]

• Social networks, e.g., [Kathleen Carley;

Wasserman+Faust]

• Web mining, e.g., [Soumen Chakrabarti]
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Overall conclusions

• Surprising patterns in graphs

• Powerful tools exist:

– Self-similarity, fractals, Kronecker

– SVD, eigenvalues

– MDL for partitioning


