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Problem definition

• Given: one or more sequences

x1 ,  x2 ,  … ,  xt ,  …

(y1, y2, … , yt, …

… )

• Find

– similar sequences; forecasts

– patterns; clusters; outliers
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Motivation - Applications

•  Financial, sales, economic series

•  Medical

– ECGs +; blood pressure etc monitoring

– reactions to new drugs

– elderly care
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Motivation - Applications

(cont’d)

• ‘Smart house’

– sensors monitor temperature, humidity,

air quality

• video surveillance
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Motivation - Applications

(cont’d)

• civil/automobile infrastructure

– bridge vibrations [Oppenheim+02]

–  road conditions / traffic monitoring
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Motivation - Applications

(cont’d)

• Weather, environment/anti-pollution

– volcano monitoring

– air/water pollutant monitoring
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Motivation - Applications

(cont’d)

•  Computer systems

– ‘Active Disks’ (buffering, prefetching)

– web servers (ditto)

– network traffic monitoring

– ...
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Stream Data: Disk accesses

time

#bytes
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Settings & Applications

• One or more sensors, collecting time-series

data
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Settings & Applications

Each sensor collects data (x1, x2, …, xt, …)
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Settings & Applications

Some sensors ‘report’ to others or 

to the central site
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Settings & Applications

Goal #1:

Finding patterns

in a single time sequence
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Settings & Applications

Goal #2:

Finding patterns

in many time 

sequences
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Problem #1:

Goal: given a signal (e.g.., #packets over

time)

Find: patterns, periodicities, and/or compress

year

count lynx caught per year

(packets per day;

temperature per day)
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Problem#2: Forecast

Given xt, xt-1, …, forecast xt+1
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Problem#2’: Similarity search

E.g.., Find a 3-tick pattern, similar to the last one
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Problem #3:
• Given: A set of correlated time sequences

• Forecast ‘Sent(t)’
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Differences from DSP/Stat

• Semi-infinite streams

– we need on-line, ‘any-time’ algorithms

• Can not afford human intervention

– need automatic methods

• sensors have limited memory /
processing / transmitting power

– need for (lossy) compression
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Important observations

Patterns, rules, forecasting and similarity
indexing are closely related:

• To do forecasting, we need

– to find patterns/rules

– to find similar settings in the past

• to find outliers, we need to have forecasts

– (outlier = too far away from our forecast)
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Important topics NOT in this

tutorial:

• Continuous queries

– [Babu+Widom ] [Gehrke+] [Madden+]

• Categorical data streams

– [Hatonen+96]

•  Outlier detection (discontinuities)

– [Breunig+00]

• Related (see D. Shasha’s tutorial)
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Outline

• Motivation

• Similarity Search and Indexing

• DSP

• Linear Forecasting

• Bursty traffic - fractals and multifractals

• Non-linear forecasting

• Conclusions
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Outline

• Motivation

• Similarity search and distance functions

– Euclidean

– Time-warping

• DSP

• ...
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Importance of distance

functions

Subtle, but absolutely necessary:

• A ‘must’ for similarity indexing (->

forecasting)

• A ‘must’ for clustering

Two major families

– Euclidean and Lp norms

– Time warping and variations
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Euclidean and Lp
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•L2 = Euclidean
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Observation #1

• Time sequence -> n-d

vector

...

Day-1

Day-2

Day-n
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Observation #2

Euclidean distance is

closely related to

– cosine similarity

– dot product

– ‘cross-correlation’

function

...

Day-1

Day-2

Day-n
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Time Warping

• allow accelerations - decelerations

– (with or w/o penalty)

• THEN compute the (Euclidean) distance (+

penalty)

• related to the string-editing distance
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Time Warping

‘stutters’:
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Time warping

Q: how to compute it?

A: dynamic programming

      D( i, j ) = cost to match

prefix of length i of first sequence  x with prefix
of length j of second sequence y

15-826 (c) C. Faloutsos, 2006 32

CMU SCS

Thus, with no penalty for stutter, for sequences

x1, x2, …, xi,;        y1, y2, …, yj
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VERY SIMILAR to the string-editing distance
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Time warping

• Complexity: O(M*N) - quadratic on the
length of the strings

• Many variations (penalty for stutters; limit
on the number/percentage of stutters; …)

• popular in voice processing

[Rabiner+Juang]
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Other Distance functions

• piece-wise linear/flat approx.; compare

pieces [Keogh+01] [Faloutsos+97]

• ‘cepstrum’ (for voice [Rabiner+Juang])

– do DFT; take log of amplitude; do DFT again!

• Allow for small gaps [Agrawal+95]

See tutorial by [Gunopulos Das, SIGMOD01]
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Other Distance functions

• recently: parameter-free, MDL based

[Keogh, KDD’04]
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Conclusions

Prevailing distances:

– Euclidean and

– time-warping
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Outline

• Motivation

• Similarity search and distance functions

• Linear Forecasting

• Bursty traffic - fractals and multifractals

• Non-linear forecasting

• Conclusions
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Forecasting

"Prediction is very difficult, especially about

the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/t

houghts.html
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Outline

• Motivation

• ...

• Linear Forecasting

– Auto-regression: Least Squares; RLS

– Co-evolving time sequences

– Examples

– Conclusions

15-826 (c) C. Faloutsos, 2006 42

CMU SCS

Problem#2: Forecast

• Example: give xt-1, xt-2, …, forecast xt

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11

Time Tick

N
u

m
b

er
 o

f 
p

a
ck

et
s 

se
n

t

??



C. Faloutsos 15-826

CMU 8

15-826 (c) C. Faloutsos, 2006 43

CMU SCS

Forecasting: Preprocessing

MANUALLY:

remove trends                    spot periodicities
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Problem#2: Forecast
• Solution: try to express

xt

as a linear function of the past: xt-2, xt-2, …,

(up to a window of w)

Formally:
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(Problem: Back-cast; interpolate)
• Solution - interpolate: try to express

xt

as a linear function of the past AND the future:

 xt+1, xt+2, … xt+wfuture; xt-1, … xt-wpast

(up to windows of wpast , wfuture)

• EXACTLY the same algo’s

0
10
20
30
40
50
60
70
80
90

1 3 5 7 9 11
Time Tick

??

15-826 (c) C. Faloutsos, 2006 46

CMU SCS

Linear Regression: idea
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• express what we don’t know (= ‘dependent variable’)

• as a linear function of what we know (= ‘indep. variable(s)’)

Body height
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Linear Auto Regression:

Time Packets

Sent (t-1)

Packets

Sent(t)

1 - 43

2 43 54

3 54 72

…
…

…

N 25 ??
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Linear Auto Regression:
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• lag w=1

• Dependent variable = # of packets sent (S [t])

• Independent variable = # of packets sent (S[t-1])

‘lag-plot’
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Outline

• Motivation

• ...

• Linear Forecasting

– Auto-regression: Least Squares; RLS

– Co-evolving time sequences

– Examples

– Conclusions
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More details:

• Q1: Can it work with window w>1?

• A1: YES!

xt-2

xt

xt-1
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More details:

• Q1: Can it work with window w>1?

• A1: YES! (we’ll fit a hyper-plane, then!)

xt-2

xt

xt-1
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More details:

• Q1: Can it work with window w>1?

• A1: YES! (we’ll fit a hyper-plane, then!)

xt-2

xt-1

xt
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More details:

• Q1: Can it work with window w>1?

• A1: YES! The problem becomes:

X[N ×w] × a[w ×1] = y[N ×1]

• OVER-CONSTRAINED

– a is the vector of the regression coefficients

– X has the N values of the w indep. variables

– y has the N values of the dependent variable
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More details:

• X[N ×w] × a[w ×1] = y[N ×1]
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More details:

• X[N ×w] × a[w ×1] = y[N ×1]
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More details

• Q2: How to estimate a1, a2, … aw  = a?

• A2: with Least Squares fit

• (Moore-Penrose pseudo-inverse)

• a is the vector that minimizes the RMSE

from y

• <identical math with ‘query feedbacks’>

 a = ( XT × X )-1 × (XT × y)
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More details
• Straightforward solution:

• Observations:

– Sample matrix X grows over time

– needs matrix inversion

– O(N×w2) computation

– O(N×w) storage

 a = ( XT × X )-1 × (XT × y)

a  :  Regression Coeff. Vector

X :  Sample Matrix
XN:

w 

N
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Even more details

• Q3: Can we estimate a incrementally?

• A3: Yes, with the brilliant, classic method

of ‘Recursive Least Squares’ (RLS) (see,

e.g., [Yi+00], for details).

• We can do the matrix inversion, WITHOUT

inversion! (How is that possible?!)
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Even more details

• Q3: Can we estimate a incrementally?

• A3: Yes, with the brilliant, classic method

of ‘Recursive Least Squares’ (RLS) (see,

e.g., [Yi+00], for details).

• We can do the matrix inversion, WITHOUT

inversion! (How is that possible?!)

• A: our matrix has special form: (XT X)
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More details

XN:

w 

NXN+1

At the N+1 time tick:

xN+1
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More details

• Let GN = ( XN
T × XN )-1       (``gain matrix’’)

• GN+1 can be computed recursively from GN

GN

w 

w
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EVEN more details:

NN

T

NNNN GxxGcGG ××××−= ++

−

+ 11

1

1 ][][

]1[ 11

T

NNN xGxc ++ ××+=

1 x w row vector

Let’s elaborate 

(VERY IMPORTANT, VERY VALUABLE!)
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EVEN more details:

][][ 11

1

11 ++
−

++ ×××= N

T

NN

T

N yXXXa
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EVEN more details:

][][ 11

1

11 ++
−

++ ×××= N

T

NN

T

N yXXXa

[w x 1]

[w x (N+1)]

[(N+1) x w]

[w x (N+1)]

[(N+1) x 1]
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EVEN more details:

][][ 11

1

11 ++
−

++ ×××= N

T

NN

T

N yXXXa

[w x (N+1)]

[(N+1) x w]
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EVEN more details:

NN

T

NNNN GxxGcGG ××××−= ++

−

+ 11

1

1 ][][

]1[ 11

T

NNN xGxc ++ ××+=

][][ 11

1

11 ++
−

++ ×××= N

T

NN

T

N yXXXa

1

111 ][ −

+++ ×≡ N

T

NN XXG
1 x w row vector‘gain

matrix’
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EVEN more details:

NN

T

NNNN GxxGcGG ××××−= ++

−

+ 11

1

1 ][][

]1[ 11

T

NNN xGxc ++ ××+=
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EVEN more details:

NN

T

NNNN GxxGcGG ××××−= ++

−

+ 11

1

1 ][][

]1[ 11

T

NNN xGxc ++ ××+=

wxw wxw wxw wx1
1xw

wxw

1x1

SCALAR!
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Altogether:
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Altogether:

IG δ≡0

where 

I: w x w identity matrix

δ: a large positive number
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Comparison:

• Straightforward Least
Squares

– Needs huge matrix
(growing in size)
O(N×w)

– Costly matrix
operation
O(N×w2)

• Recursive LS

– Need much smaller,
fixed size matrix
O(w×w)

– Fast, incremental
computation
O(1×w2)

– no matrix inversion

N = 106,     w = 1-100
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Pictorially:

• Given:

Independent Variable
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Pictorially:

Independent Variable

D
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new point
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Pictorially:

Independent Variable
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RLS: quickly compute new best fit

new point
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Even more details

• Q4: can we ‘forget’ the older samples?

• A4: Yes - RLS can easily handle that

[Yi+00]:

15-826 (c) C. Faloutsos, 2006 76

CMU SCS

Adaptability - ‘forgetting’

Independent Variable

eg., #packets sent
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Adaptability - ‘forgetting’

Independent Variable

eg. #packets sent
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Adaptability - ‘forgetting’

Independent Variable
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Trend change

(R)LS

with no forgetting

(R)LS

with forgetting

• RLS: can *trivially* handle ‘forgetting’
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How to choose ‘w’?

• goal: capture arbitrary periodicities

• with NO human intervention

• on a semi-infinite stream
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Answer:

• ‘AWSOM’ (Arbitrary Window Stream

fOrecasting Method) [Papadimitriou+,

vldb2003]

• idea: do AR on each wavelet level

• in detail:
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AWSOM
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AWSOM - idea

Wl,t
Wl,t-1Wl,t-2

Wl,t ====       ββββl,1Wl,t-1 + ββββl,2Wl,t-2 + … 

Wl’,t’-1Wl’,t’-2
Wl’,t’

Wl’,t’ ====       ββββl’,1Wl’,t’-1 + ββββl’,2Wl’,t’-2 + … 
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More details…

• Update of wavelet coefficients

• Update of linear models

• Feature selection

– Not all correlations are significant

– Throw away the insignificant ones (“noise”)

(incremental)

(incremental; RLS)

(single-pass)
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Results - Synthetic data
• Triangle pulse

• Mix (sine +

square)

• AR captures

wrong trend (or

none)

• Seasonal AR

estimation fails

AWSOM AR Seasonal AR
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Results - Real data

• Automobile traffic

– Daily periodicity

– Bursty “noise” at smaller scales

• AR fails to capture any trend

• Seasonal AR estimation fails
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Results - real data

• Sunspot intensity

– Slightly time-varying “period”

• AR captures wrong trend

• Seasonal ARIMA

– wrong downward trend, despite help by human!
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Complexity

• Model update

Space:  O((((lgN + mk2)))) ≈≈≈≈ O((((lgN))))

Time:   O((((k2)))) ≈≈≈≈ O((((1))))

• Where

– N: number of points (so far)

– k: number of regression coefficients; fixed

– m:number of linear models; O((((lgN))))

Skip

15-826 (c) C. Faloutsos, 2006 89

CMU SCS

Outline

• Motivation

• ...

• Linear Forecasting

– Auto-regression: Least Squares; RLS

– Co-evolving time sequences

– Examples

– Conclusions
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Co-Evolving Time Sequences
• Given: A set of correlated time sequences

• Forecast ‘Repeated(t)’
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Solution:

Q: what should we do?
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Solution:

Least Squares, with

• Dep. Variable: Repeated(t)

• Indep. Variables: Sent(t-1) … Sent(t-w);

Lost(t-1) …Lost(t-w); Repeated(t-1), ...

• (named: ‘MUSCLES’ [Yi+00])
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Forecasting  - Outline

• Auto-regression

• Least Squares; recursive least squares

• Co-evolving time sequences

• Examples

• Conclusions
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Examples - Experiments

• Datasets

– Modem pool traffic (14 modems, 1500 time-

ticks; #packets per time unit)

– AT&T WorldNet internet usage (several data

streams; 980 time-ticks)

• Measures of success

– Accuracy : Root Mean Square Error (RMSE)
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Accuracy - “Modem”

MUSCLES outperforms AR & “yesterday”

0

0.5

1

1.5

2
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3

3.5

4

RMSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Modems

AR

yesterday

MUSCLES
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Accuracy - “Internet”

0

0.2

0.4

0.6

0.8

1

1.2

1.4

RMSE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Streams

AR

yesterday

MUSCLES

MUSCLES consistently outperforms AR & “yesterday”
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B.II - Time Series Analysis -

Outline

• Auto-regression

• Least Squares; recursive least squares

• Co-evolving time sequences

• Examples

• Conclusions
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Conclusions - Practitioner’s

guide

• AR(IMA) methodology: prevailing method

for linear forecasting

• Brilliant method of Recursive Least Squares

for fast, incremental estimation.

• See [Box-Jenkins]

• very recently: AWSOM (no human

intervention)
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Resources: software and urls

• MUSCLES: Prof. Byoung-Kee Yi:
http://www.postech.ac.kr/~bkyi/

or christos@cs.cmu.edu

• free-ware: ‘R’ for stat. analysis

(clone of Splus)

 http://cran.r-project.org/
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Books

• George E.P. Box and Gwilym M. Jenkins and Gregory C.

Reinsel, Time Series Analysis: Forecasting and Control,

Prentice Hall, 1994 (the classic book on ARIMA, 3rd ed.)

• Brockwell, P. J. and R. A. Davis (1987). Time Series:

Theory and Methods. New York, Springer Verlag.
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Additional Reading

• [Papadimitriou+ vldb2003] Spiros Papadimitriou, Anthony

Brockwell and Christos Faloutsos Adaptive, Hands-Off

Stream Mining VLDB 2003, Berlin, Germany, Sept. 2003

• [Yi+00] Byoung-Kee Yi et al.: Online Data Mining for

Co-Evolving Time Sequences, ICDE 2000. (Describes

MUSCLES and Recursive Least Squares)
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Outline

• Motivation

• Similarity search and distance functions

• Linear Forecasting

• Bursty traffic - fractals and multifractals

• Non-linear forecasting

• Conclusions
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Outline

• Motivation

• ...

• Linear Forecasting

• Bursty traffic - fractals and multifractals

– Problem

– Main idea (80/20, Hurst exponent)

– Results
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Recall: Problem #1:

Goal: given a signal (eg., #bytes over time)

Find: patterns, periodicities, and/or compress

time

#bytes Bytes per 30’

(packets per day;

earthquakes per year)
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Problem #1

• model bursty traffic

• generate realistic traces

• (Poisson does not work)

time

# bytes

Poisson
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Motivation

• predict queue length distributions (e.g., to

give probabilistic guarantees)

• “learn” traffic, for buffering, prefetching,

‘active disks’, web servers
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Q: any ‘pattern’?

time

# bytes
• Not Poisson

• spike; silence; more

spikes; more silence…

• any rules?
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solution: self-similarity

# bytes

time time

# bytes
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But:

• Q1: How to generate realistic traces;

extrapolate; give guarantees?

• Q2: How to estimate the model parameters?
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Outline

• Motivation

• ...

• Linear Forecasting

• Bursty traffic - fractals and multifractals

– Problem

– Main idea (80/20, Hurst exponent)

– Results
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Approach

• Q1: How to generate a sequence, that is

– bursty

– self-similar

– and has similar queue length distributions

15-826 (c) C. Faloutsos, 2006 113

CMU SCS

Approach

• A: ‘binomial multifractal’ [Wang+02]

• ~ 80-20 ‘law’:

– 80% of bytes/queries etc on first half

– repeat recursively

• b: bias factor (eg., 80%)
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Binary multifractals

20 80
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Binary multifractals

20 80
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Parameter estimation

• Q2: How to estimate the bias factor b?
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Parameter estimation

• Q2: How to estimate the bias factor b?

• A: MANY ways [Crovella+96]

– Hurst exponent

– variance plot

– even DFT amplitude spectrum! (‘periodogram’)

– More robust: ‘entropy plot’ [Wang+02]
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Entropy plot

• Rationale:

–  burstiness: inverse of uniformity

– entropy measures uniformity of a distribution

– find entropy at several granularities, to see

whether/how our distribution is close to

uniform.
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Entropy plot

• Entropy E(n) after n

levels of splits

• n=1: E(1)= - p1 log2(p1)-

p2 log2(p2)

p1 p2

% of bytes

 here
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Entropy plot

• Entropy E(n) after n

levels of splits

• n=1: E(1)= - p1 log(p1)-

p2 log(p2)

• n=2: E(2) = - Σι p2,i *

log2 (p2,i)

p2,1 p2,2 p2,3 p2,4
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Real traffic

• Has linear entropy plot

(-> self-similar)

# of levels (n)

Entropy

E(n)

0.73
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Observation - intuition:

intuition: slope =

  intrinsic dimensionality =

  info-bits per coordinate-bit

– unif. Dataset: slope =?

– multi-point: slope = ?

# of levels (n)

Entropy

E(n)
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Observation - intuition:

intuition: slope =

  intrinsic dimensionality =

  info-bits per coordinate-bit

– unif. Dataset: slope =1

– multi-point: slope = 0

# of levels (n)

Entropy

E(n)
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Entropy plot - Intuition

• Slope ~ intrinsic dimensionality (in fact,

‘Information fractal dimension’)

• = info bit per coordinate bit - eg

Dim = 1

Pick a point; 

reveal its coordinate bit-by-bit -

how much info is each bit worth to me?

15-826 (c) C. Faloutsos, 2006 125

CMU SCS

Entropy plot

• Slope ~ intrinsic dimensionality (in fact,

‘Information fractal dimension’)

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

‘info’ value = E(1): 1 bit
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Entropy plot

• Slope ~ intrinsic dimensionality (in fact,

‘Information fractal dimension’)

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

Is next MSB =0?
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Entropy plot

• Slope ~ intrinsic dimensionality (in fact,

‘Information fractal dimension’)

• = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

Is next MSB =0?

Info value =1 bit

= E(2) - E(1) =

slope!
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Entropy plot

• Repeat, for all points at same position:

Dim=0
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Entropy plot

• Repeat, for all points at same position:

• we need 0 bits of info, to determine position

• -> slope = 0 = intrinsic dimensionality

Dim=0
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Entropy plot

• Real (and 80-20) datasets can be in-

between: bursts, gaps, smaller bursts,

smaller gaps, at every scale

Dim = 1

Dim=0

0<Dim<1
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(Fractals, again)

• What set of points could have behavior

between point and line?
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Cantor dust

• Eliminate the middle third

• Recursively!
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Cantor dust
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Cantor dust
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Cantor dust
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Cantor dust
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Dimensionality?

(no length; infinite # points!)
Answer: log2 / log3 = 0.6

Cantor dust
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Some more entropy plots:

• Poisson vs real

Poisson: slope = ~1 -> uniformly distributed

1 0.73
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b-model

• b-model traffic gives perfectly

linear plot

• Lemma: its slope is

slope = -b log2b - (1-b) log2 (1-b)

• Fitting: do entropy plot; get

slope; solve for b

E(n)

n
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Outline

• Motivation

• ...

• Linear Forecasting

• Bursty traffic - fractals and multifractals

– Problem

– Main idea (80/20, Hurst exponent)

– Experiments - Results
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Experimental setup

• Disk traces (from HP [Wilkes 93])

• web traces from LBL

http://repository.cs.vt.edu/

lbl-conn-7.tar.Z
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Model validation

• Linear entropy plots

Bias factors b: 0.6-0.8

smallest b / smoothest: nntp traffic
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Web traffic - results

• LBL, NCDF of queue lengths (log-log scales)

(queue length l)

Prob( >l)

How to give guarantees?
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Web traffic - results

• LBL, NCDF of queue lengths (log-log scales)

(queue length l)

Prob( >l)

20% of the requests

will see

queue lengths <100
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Conclusions

• Multifractals (80/20, ‘b-model’,

Multiplicative Wavelet Model (MWM)) for

analysis and synthesis of  bursty traffic
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Books

• Fractals: Manfred Schroeder: Fractals, Chaos, Power

Laws: Minutes from an Infinite Paradise W.H. Freeman

and Company, 1991 (Probably the BEST book on

fractals!)
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Further reading:

• Crovella, M. and A. Bestavros (1996). Self-Similarity in

World Wide Web Traffic, Evidence and Possible Causes.

Sigmetrics.

• [ieeeTN94] W. E. Leland, M.S. Taqqu,  W. Willinger,

D.V. Wilson,  On the Self-Similar Nature of Ethernet

Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15,

Feb. 1994.
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Further reading

• [Riedi+99] R. H. Riedi, M. S. Crouse, V. J. Ribeiro, and R.

G. Baraniuk, A Multifractal Wavelet Model with

Application to Network Traffic, IEEE Special Issue on

Information Theory, 45. (April 1999), 992-1018.

• [Wang+02] Mengzhi Wang, Tara Madhyastha, Ngai Hang

Chang, Spiros Papadimitriou and Christos Faloutsos, Data

Mining Meets Performance Evaluation: Fast Algorithms

for Modeling Bursty Traffic, ICDE 2002, San Jose, CA,

2/26/2002 - 3/1/2002.
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Outline

• Motivation

• ...

• Linear Forecasting

• Bursty traffic - fractals and multifractals

• Non-linear forecasting

• Conclusions

15-826 (c) C. Faloutsos, 2006 150

CMU SCS



C. Faloutsos 15-826

CMU 26

15-826 (c) C. Faloutsos, 2006 151

CMU SCS

Detailed Outline

• Non-linear forecasting

– Problem

– Idea

– How-to

– Experiments

– Conclusions
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Recall: Problem #1

Given a time series {xt}, predict its future

course, that is, xt+1, xt+2, ...

Time

Value
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How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: ‘Delayed Coordinate

Embedding’ =  Lag Plots [Sauer92]
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General Intuition (Lag Plot)

xt-1

xxtt

4-NN
New Point

Interpolate

these…

To get the final

prediction

Lag = 1,

k = 4 NN
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Questions:

• Q1: How to choose lag L?

• Q2: How to choose k (the # of  NN)?

• Q3: How to interpolate?

• Q4: why should this work at all?
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Q1: Choosing lag L

• Manually (16, in award winning system by

[Sauer94])
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Q2: Choosing number of

neighbors k

• Manually (typically ~ 1-10)
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Q3: How to interpolate?

How do we interpolate between the

    k nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop

with distance - how?)
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Q3: How to interpolate?

A3.3: Using SVD - seems to perform best

([Sauer94] - first place in the Santa Fe

forecasting competition)

Xt-1

xt
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Q4: Any theory behind it?

A4: YES!
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Theoretical foundation

• Based on the “Takens’ Theorem”

[Takens81]

• which says that long enough delay vectors

can do prediction, even if there are

unobserved variables in the dynamical

system (= diff. equations)
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Theoretical foundation

Example: Lotka-Volterra equations

dH/dt = r H – a H*P

dP/dt = b H*P – m P

H is count of prey (e.g., hare)

P is count of predators (e.g., lynx)

Suppose only P(t) is observed (t=1, 2, …).

H

P

Skip
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Theoretical foundation

• But the delay vector space is a faithful

reconstruction of the internal system state

• So prediction in delay vector space is as

good as prediction in state space

Skip

H

P

P(t-1)

P(t)
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Detailed Outline

• Non-linear forecasting

– Problem

– Idea

– How-to

– Experiments

– Conclusions
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Datasets

Logistic Parabola:
   xt = axt-1(1-xt-1) + noise
   Models population of flies [R. May/1976]
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Datasets

Logistic Parabola:
   xt = axt-1(1-xt-1) + noise
   Models population of flies [R. May/1976]
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ARIMA: fails
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Logistic Parabola

Timesteps

Value

Our Prediction from

here
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Logistic Parabola

Timesteps

Value

Comparison of prediction

to correct values
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Datasets

LORENZ: Models convection
currents in the air

dx / dt = a (y - x)

dy / dt = x (b - z) - y

dz / dt = xy - c z

Value
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LORENZ

Timesteps

Value

Comparison of prediction

to correct values
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Datasets

Time

Value

• LASER: fluctuations in
a Laser over time (used
in Santa Fe
competition)
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Laser

Timesteps

Value

Comparison of prediction

to correct values
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Conclusions

• Lag plots for non-linear forecasting

(Takens’ theorem)

• suitable for ‘chaotic’ signals
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Overall conclusions

• Similarity search: Euclidean/time-warping;

feature extraction and SAMs
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Overall conclusions

• Similarity search: Euclidean/time-warping;

feature extraction and SAMs

• Signal processing: DWT is a powerful tool
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Overall conclusions

• Similarity search: Euclidean/time-warping;

feature extraction and SAMs

• Signal processing: DWT is a powerful tool

• Linear Forecasting: AR (Box-Jenkins)

methodology
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Overall conclusions

• Similarity search: Euclidean/time-warping;

feature extraction and SAMs

• Signal processing: DWT is a powerful tool

• Linear Forecasting: AR (Box-Jenkins)

methodology; AWSOM

• Bursty traffic: multifractals (80-20 ‘law’)
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Overall conclusions

• Similarity search: Euclidean/time-warping;

feature extraction and SAMs

• Signal processing: DWT is a powerful tool

• Linear Forecasting: AR (Box-Jenkins)

methodology

• Bursty traffic: multifractals (80-20 ‘law’)

• Non-linear forecasting: lag-plots (Takens)


