

Motivation - Applications
(cont'd)

• Computer systems

- 'Active Disks' (buffering, prefetching)

- web servers (ditto)

- network traffic monitoring

- ...

Settings & Applications

• One or more sensors, collecting time-series data

Important observations

Patterns, rules, forecasting and similarity indexing are closely related:

• To do forecasting, we need

– to find patterns/rules

– to find similar settings in the past

• to find outliers, we need to have forecasts

– (outlier = too far away from our forecast)

Time warping

Q: how to compute it?

A: dynamic programming

D(i, j) = cost to match

prefix of length i of first sequence x with prefix of length j of second sequence y

15-826

(c) C. Faloutsos, 2006

CMU SO

Time warping

Thus, with no penalty for stutter, for sequences

$$x_1, x_2, ..., x_{i,:}$$
 $y_1, y_2, ..., y_i$

32

$$D(i,j) = \|x[i] - y[j]\| + \min \begin{cases} D(i-1,j-1) & \text{no stutter} \\ D(i,j-1) & \text{x-stutter} \\ D(i-1,j) & \text{y-stutter} \end{cases}$$

5-826 (c) C. Faloutsos, 2006

CMU:

Time warping

VERY SIMILAR to the string-editing distance

$$D(i, j) = \|x[i] - y[j]\| + \min \begin{cases} D(i-1, j-1) & \text{no stutter} \\ D(i, j-1) & \text{x-stutter} \\ D(i-1, j) & \text{y-stutter} \end{cases}$$

15-826 (c) C. Faloutsos, 2006

31

Time warping

- Complexity: O(M*N) quadratic on the length of the strings
- Many variations (penalty for stutters; limit on the number/percentage of stutters; ...)
- popular in voice processing [Rabiner+Juang]

15-826 (c) C. Faloutsos, 2006 34

MU SCS

Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- 'cepstrum' (for voice [Rabiner+Juang])
 do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95] See tutorial by [Gunopulos Das, SIGMOD01]

15-826

(c) C. Faloutsos, 2006

CMU SC

Other Distance functions

• recently: parameter-free, MDL based [Keogh, KDD'04]

15-826

(c) C. Faloutsos, 2006

15-826

Conclusions - Practitioner's guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]
- very recently: AWSOM (no human intervention)

15-826 (c) C. Faloutsos, 2006 98

Parameter estimation

• Q2: How to estimate the bias factor b?

• A: MANY ways [Crovella+96]

- Hurst exponent

- variance plot

- even DFT amplitude spectrum! ('periodogram')

- More robust: 'entropy plot' [Wang+02]

Entropy plot

• Rationale:

- burstiness: inverse of uniformity

- entropy measures uniformity of a distribution

- find entropy at several granularities, to see whether/how our distribution is close to uniform.

(Fractals, again)

• What set of points could have behavior between point and line?

Experimental setup

• Disk traces (from HP [Wilkes 93])

• web traces from LBL

http://repository.cs.vt.edu/
lbl-conn-7.tar.Z

Further reading:

• Crovella, M. and A. Bestavros (1996). Self-Similarity in World Wide Web Traffic, Evidence and Possible Causes. Sigmetrics.

• [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE Transactions on Networking, 2, 1, pp 1-15, Feb. 1994.

How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: 'Delayed Coordinate Embedding' = Lag Plots [Sauer92]

Questions:

• Q1: How to choose lag L?

• Q2: How to choose k (the # of NN)?

• Q3: How to interpolate?

• Q4: why should this work at all?

Conclusions

• Lag plots for non-linear forecasting (Takens' theorem)

• suitable for 'chaotic' signals

Overall conclusions

• Similarity search: Euclidean/time-warping; feature extraction and SAMs

• Signal processing: DWT is a powerful tool

Overall conclusions

• Similarity search: Euclidean/time-warping; feature extraction and SAMs

• Signal processing: DWT is a powerful tool

• Linear Forecasting: AR (Box-Jenkins) methodology; AWSOM

• Bursty traffic: multifractals (80-20 'law')

