

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- text

Singular Value Decomposition (SVD)

- multimedia
-

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies
- SVD properties
- More case studies
- Conclusions

SVD - Other properties summary

- can produce orthogonal basis (obvious) (who cares?)
- can solve over- and under-determined linear problems (see $\mathrm{C}(1)$ property)
- can compute 'fixed points’ (= 'steady state prob. in Markov chains') (see C(4) property)

SVD -outline of properties

- (A): obvious
- (B): less obvious
- (C): least obvious (and most powerful!)

Properties - by defn.:

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$
$\mathrm{A}(1): \mathbf{U}_{[\mathrm{Trxn}]}^{\mathrm{T}} \mathbf{U}_{[\mathrm{nxr}]}=\mathbf{I}_{[\mathrm{rxr}]}$ (identity matrix)
$\mathrm{A}(2): \mathbf{V}_{[\mathrm{rxn}]}^{\mathrm{T}} \mathbf{V}_{[\mathrm{nxr]}]}=\mathbf{I}_{[\mathrm{rxr}]}$
$\mathrm{A}(3): \boldsymbol{\Lambda}^{\mathrm{k}}=\operatorname{diag}\left(\lambda_{1}{ }^{\mathrm{k}}, \lambda_{2}{ }^{\mathrm{k}}, \ldots \lambda_{\mathrm{r}}{ }^{\mathrm{k}}\right)(\mathrm{k}$: ANY real number)
$\mathrm{A}(4): \mathbf{A}^{\mathbf{T}}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{U}^{\mathbf{T}}$

15-826

Less obvious properties

$$
\begin{aligned}
& \mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr]}} \boldsymbol{\Lambda}_{[\mathrm{rxr]}} \mathbf{V}^{\mathrm{T}}{ }_{[\mathrm{rxm}]} \\
& \mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm]}}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn}]}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}} \\
& \text { symmetric; Intuition? }
\end{aligned}
$$

Less obvious properties

A: term-to-term similarity matrix
$\mathrm{B}(3):\left(\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn]}} \mathbf{A}_{[\mathrm{nxm} \mathrm{m}]}\right)^{\mathrm{k}}=\mathbf{V} \mathbf{\Lambda}^{2 \mathrm{k}} \mathbf{V}^{\mathrm{T}}$
and
$\mathrm{B}(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathbf{v}_{1} \lambda_{1}{ }^{2 \mathrm{k}} \mathbf{v}_{1}{ }^{\mathrm{T}}$ for $\mathrm{k} \gg 1$ where
\mathbf{v}_{1} : [m x 1] first column (singular-vector) of \mathbf{V}
λ_{1} : strongest singular value

15-826
Copyright: C. Faloutsos (2006)
12

Less obvious properties

$B(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathbf{v}_{1} \lambda_{!^{2}}{ }^{\mathrm{k}} \mathbf{v}_{!}{ }^{\mathrm{T}}$ for $\mathrm{k} \gg 1$ B(5): $\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\mathbf{\prime}} \sim($ constant $) \mathbf{v}_{1}$
ie., for (almost) any \mathbf{v}^{\prime}, it converges to a vector parallel to \mathbf{v}_{1}
Thus, useful to compute first singular vector/value (as well as the next ones, too...)

\int^{30} Least obvious properties

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}
$$

$$
\mathrm{C}(1): \mathbf{A}_{[\mathrm{nx} \mathrm{~m}]} \mathbf{x}_{[\mathrm{m} \times 1]}=\mathbf{b}_{[\mathrm{nx} \times 1]}
$$

$$
\text { let } \mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}
$$

if under-specified, \mathbf{x}_{0} gives 'shortest' solution
if over-specified, it gives the 'solution' with the smallest least squares error
(see Num. Recipes, p. 62)

Least obvious properties

Illustration: under-specified, eg
$[12][\mathrm{wz}]^{\mathrm{T}}=4(\mathrm{ie}, 1 \mathrm{w}+2 \mathrm{z}=4)$

Illustration: over-specified, eg
$\left[\begin{array}{ll}3 & 2\end{array}\right]^{\mathrm{T}}[\mathrm{w}]=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}}(\mathrm{ie}, 3 \mathrm{w}=1 ; 2 \mathrm{w}=2)$

Least obvious properties cont'd

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}$

C (2): $\mathbf{A}_{[\mathrm{nxm}]} \mathbf{v}_{\mathbf{1}[\mathrm{m} \times \mathrm{l}]}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}_{[\mathrm{nx} 1]}}$
where $\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{1}}$ the first (column) vectors of $\mathbf{V}, \mathbf{U} .\left(\mathbf{v}_{\mathbf{1}}\right.$ $==$ right-singular-vector)
$\mathrm{C}(3)$: symmetrically: $\mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathbf{u}_{1}==$ left-singular-vector
Therefore:

15-826
Copyright: C. Faloutsos (2006)
18

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}$

$$
\mathrm{C}(4): \mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{1}{ }^{2} \mathbf{v}_{1}
$$

(fixed point - the dfn of eigenvector for a symmetric matrix)

Least obvious properties altogether

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{\text {[rxm]}}^{\mathbf{T}}$
$\mathrm{C}(1): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{x}_{[\mathrm{m} \times \mathrm{x}]}=\mathbf{b}_{[\mathrm{nx} 1]}$
then, $\mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$: shortest, actual or leastsquares solution
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}[\mathrm{mxy}]}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}_{[\mathrm{nx} 1]}}$
$\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathrm{C}(4): \mathbf{A}^{\mathbf{T}} \mathbf{A} \mathbf{v}_{\mathbf{1}}=\boldsymbol{\lambda}_{\mathbf{1}}{ }^{\mathbf{2}} \mathbf{v}_{\mathbf{1}}$
15-826

SVD - detailed outline

- ...
- Case studies
- SVD properties
- more case studies
- Kleinberg/google algorithms
- query feedbacks
- Conclusions

15-826

Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0: find all pages containing the query terms
Step 1: expand by one move forward and backward

Kleinberg's algorithm

- Step 1: expand by one move forward and backward

Kleinberg's algorithm

observations

- recursive definition!
- each node (say, ' i ' -th node) has both an authoritativeness score a_{i} and a hubness score h_{i}

Kleinberg's algorithm

Let E be the set of edges and \mathbf{A} be the adjacency matrix:
the (i, j) is 1 if the edge from i to j exists
Let h and a be [$\mathrm{n} \times 1$] vectors with the 'hubness' and 'authoritativiness' scores.
Then:

Kleinberg's algorithm

Then:

$$
a_{i}=h_{k}+h_{l}+h_{m}
$$

that is
$a_{i}=\operatorname{Sum}\left(h_{j}\right) \quad$ over all j that
(j, i) edge exists
or
$\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}$
15-826
Copyright: C. Faloutsos (2006)

Kleinberg's algorithm

In conclusion, we want vectors \mathbf{h} and \mathbf{a} such that:

$$
\begin{gathered}
\mathbf{h}=\mathbf{A} \mathbf{a} \\
\mathbf{a}=\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{gathered}
$$

Recall properties:
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}[\mathrm{mx} \mathrm{1]}}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}[\mathrm{nx1]}}$
$\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$

15-826
Copyright: C. Faloutsos (2006)

Kleinberg's algorithm

(Q: to which of all the singular-vectors? why?)
A: to the ones of the strongest singular-value, because of property $\mathrm{B}(5)$:

$$
\mathrm{B}(5):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\prime} \sim(\text { constant }) \mathbf{v}_{1}
$$

Kleinberg's algorithm discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social networs / 'small world' phenomena

- closely related: imagine a particle randomly moving along the edges (*)
- compute its steady-state probabilities
(*) with occasional random jumps

(Simplified) PageRank algorithm
- $\mathbf{A}^{\mathrm{T}} \mathbf{p}=\mathbf{p}$

(Simplified) PageRank algorithm
- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps

If \mathbf{A} is a (nxn) square matrix
(λ, \mathbf{x}) is an eigenvalue/eigenvector pair of \mathbf{A} if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

CLOSELY related to singular values:

Eigen- vs singular-values if

$$
\mathbf{B}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr}]} \Lambda_{[\mathrm{rxr}]}\left(\mathbf{V}_{[\mathrm{mxr}]}\right)^{\mathrm{T}}
$$

then $\mathbf{A}=\left(\mathbf{B}^{\mathbf{T}} \mathbf{B}\right)$ is symmetric and

$$
\mathrm{C}(4): \mathbf{B}^{\mathrm{T}} \mathbf{B} \mathbf{v}_{\mathrm{i}}=\lambda_{\mathrm{i}}^{2} \mathbf{v}_{\mathrm{i}}
$$

ie, $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots$: eigenvectors of $\mathbf{A}=\left(\mathbf{B}^{\mathbf{T}} \mathbf{B}\right)$

Kleinberg/google - conclusions

SVD helps in graph analysis:
hub/authority scores: strongest left- and right-singular-vectors of the adjacency matrix random walk on a graph: steady state probabilities are given by the strongest eigenvector of the transition matrix

Query feedbacks

[Chen \& Roussopoulos, sigmod 94] sample problem:
estimate selectivities (e.g., 'how many movies were made between 1940 and 1945?'
for query optimization,
LEARNING from the query results so far!!

Query feedbacks

Eventually, the problem becomes:

- estimate the parameters a1, ... a7 of the model
- to minimize the least squares errors from the real answers so far.
Formally:

Formally, with n queries and 6-th degree polynomials:

Query feedbacks

where $x_{i, j}$ such that $\operatorname{Sum}\left(x_{i, j} * a_{i}\right)=$ our estimate for the \# of movies and b_{j} : the actual

Query feedbacks

In matrix form:

$$
\mathbf{X} \mathbf{a}=\mathbf{b}
$$

and the least-squares estimate for \mathbf{a} is

$$
\mathbf{a}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathbf{T}} \mathbf{b}
$$

according to property $\mathrm{C}(1)$
(let $\mathbf{X}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathbf{T}}$)

15-826
Copyright: C. Faloutsos (2006)
60

Query feedbacks enhancements

the solution

$$
\mathbf{a}=\mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}
$$

works, but needs expensive SVD each time a new query arrives
GREAT Idea \#3: Use 'Recursive Least Squares', to adapt a incrementally.
Details: in paper - intuition:

Query feedbacks enhancements

Intuition: least squares fit
b

Query feedbacks enhancements

the new coefficients can be quickly computed from the old ones, plus statistics in a (7x7) matrix
(no need to know the details, although the RLS is a brilliant method)

Query feedbacks - conclusions

SVD helps find the Least Squares solution, to adapt to query feedbacks
(RLS $=$ Recursive Least Squares is a great method to incrementally update least-squares fits)

Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts’ (LSI)
- ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

Conclusions cont'd

- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

