

3^{35}		
Outline		
Goal: 'Find similar / interesting things' - Intro to DB		
Indexing - similarity search - Data Mining		
26		2

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- fractals
- text

Singular Value Decomposition (SVD)

- multimedia

SVD - Detailed outline

- Motivation
- Definition - properties
- Interpretation
- Complexity
- Case studies
- SVD properties
- Conclusions

Case study - LSI

Q1: How to do queries with LSI?
A: map query vectors into 'concept space' - how?
 with each 'concept' vector v_{i} 15-826 Copyright: C. Faloutsos (2006)

Case study - LSI

compactly, we have:
$\mathrm{q}_{\text {concept }}=\mathrm{q} \mathbf{V}$

12

Case study = LSI
Drill: how would the document ('information', 'retrieval') handled by LSI?
CMuscs term-to-concept similarities Copyright c. Faloutsos (2006)

SVD - Case studies

- multi-lingual IR; LSI queries
- compression
- PCA - 'ratio rules'
- Karhunen-Lowe transform
- query feedbacks
- google/Kleinberg algorithms

Case study: compression

[Korn+97]
Problem:

- given a matrix
- compress it, but maintain 'random access'
(surprisingly, its solution leads to data mining and visualization...)

Problem - specs

- $\sim 10^{* *} 6$ rows; $\sim 10^{* *} 3$ columns; no updates;
- random access to any cell(s) ; small error: OK

- space savings: $2: 1$

- minimum RMS error

15-826

Compression - Performance

- 3 pass algo (-> scalability) (HOW?)
- random cell(s) reconstruction
- 10:1 compression with $<2 \%$ error

SVD - Case studies

- multi-lingual IR; LSI queries
- compression
- PCA - 'ratio rules'
- Karhunen-Lowe transform
- query feedbacks
- google/Kleinberg algorithms

PCA - 'Ratio Rules'

[Korn+00]
Typically: 'Association Rules' (eg., \{bread, milk\} -> \{butter\}
But:

- which set of rules is 'better'?
- how to reconstruct missing/corrupted values?
- need binary/bucketized values

PCA - 'Ratio Rules'

Q2: how to reconstruct missing/corrupted values?

Eg:

- rule: bread:milk = 3:4
- a customer spent $\$ 6$ on bread - how about milk?

PCA - 'Ratio Rules'

harder cases: overspecified/underspecified
over-specified:
-milk:bread:butter $=1: 2: 3$
-a customer got

- $\$ 2$ bread and $\$ 4$ milk
-how much milk?
Answer: minimize distance between 'feasible' and 'expected'
 values (using SVD...)

PCA - 'Ratio Rules'

harder cases: underspecified

15-826
Copyright: C. Faloutsos (2006)

PCA - 'Ratio Rules'

bottom line: we can reconstruct any count of missing values
This is very useful:

- can spot outliers (how?)
- can measure the 'goodness' of a set of rules (how?)

$3^{\text {cmuscs }}$	
PCA - 'Ratio Rules'	
Identical to PCA = Principal Components Analysis	
$\Rightarrow-\mathrm{Q} 1$: which set of rules is 'better'?	
\checkmark - Q2: how to reconstruct missing/corrupted values?	
- Q3: is there need for binary/bucketized values?	
- Q4: how to interpret the rules (= 'principal components')?	

3
 PCA - 'Ratio Rules'

- Q1: which set of rules is 'better'?
- A: the ones that needs the fewest outliers:
- pretend we don't know a value (eg., \$ of 'Smith' on 'bread')
- reconstruct it
- and sum up the squared errors, for all our entries
- (other Answers are also reasonable)

SVD - Case studies

- multi-lingual IR; LSI queries
- compression
- PCA - 'ratio rules'
- Karhunen-Lowe transform
- query feedbacks
- google/Kleinberg algorithms

K-L transform

- How to 'center' a set of vectors (= data matrix)?
- What is the covariance matrix?
- A: see textbook
- ('whitening transformation')

3
 References

- Duda, R. O. and P. E. Hart (1973). Pattern Classification and Scene Analysis. New York, Wiley
- Fukunaga, K. (1990). Introduction to Statistical Pattern Recognition, Academic Press.
- Jolliffe, I. T. (1986). Principal Component Analysis, Springer Verlag.

