

Definitions (cont'd)

- Paradox: Infinite perimeter ; Zero area!
- 'dimensionality': between 1 and 2
- actually: $\log (3) / \log (2)=1.58 \ldots$

Examples:LB county

- Long Beach county of CA (road end-points)

Other applications: Internet

- How does the internet look like?

15-826
Copyright: C. Faloutsos (2006)
73
15-826
Copyright: C. Faloutsos (2006)
74

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

More apps: Medical images

[Burdett et al, SPIE ‘93]:

- benign tumors: $\mathrm{fd} \sim 2.37$
- malignant: $\mathrm{fd} \sim 2.56$

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

- Distribution of UNIX file sizes
- web hit counts [Huberman]

15-826
Copyright: C. Faloutsos (2006)
100

Settings for fractals:

Points; areas (-> fat fractals), eg:

Settings for fractals:

Points; areas, eg:

- cities/stores/hospitals, over earth's surface
- time-stamps of events (customer arrivals, packet losses, criminal actions) over time
- regions (sales areas, islands, patches of habitats) over space

Some uses of fractals:

- Detect non-existence of rules (if points are uniform)
- Detect non-homogeneous regions (eg., legal login time-stamps may have different fd than intruders')
- Estimate number of neighbors / customers / competitors within a radius

- product ids and sales per product
- people and their salaries
- months and count of accidents

Conclusions

- tool\#1: (for points) 'correlation integral': (\#pairs within $<=r$) vs (distance r)
- tool\#2: (for categorical values) rankfrequency plot (a'la Zipf)
- tool\#3: (for numerical values) CCDF: Complementary cumulative distr. function (\#of elements with value $>=a$)

Practitioner's guide:

- tool\#1: \#pairs vs distance, for a set of objects, with a distance function (slope $=$ intrinsic dimensionality)

Books

- Strongly recommended intro book:
- Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991
- Classic book on fractals:
- B. Mandelbrot Fractal Geometry of Nature, W.H. Freeman, 1977

References

- [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger, D.V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE Transactions on Networking, 2, 1, pp 115, Feb. 1994.
- [pods94] Christos Faloutsos and Ibrahim Kamel, Beyond Uniformity and Independence: Analysis of Rtrees Using the Concept of Fractal Dimension, PODS, Minneapolis, MN, May 24-26, 1994, pp. 4-13
References
- [icde99] Guido Proietti and Christos Faloutsos, I/O
complexity for range queries on region data stored
using an R-tree International Conference on Data
Engineering (ICDE), Sydney, Australia, March 23-26,
1999

\quad| [sigmod2000] Christos Faloutsos, Bernhard Seeger, |
| :--- |
| |
| Agma J. M. Traina and Caetano Traina Jr., Spatial Join |
| Selectivity Using Power Laws, SIGMOD 2000 |

Copyright: C. Faloutsos (2006)

