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Fraud Detection: Graph Analysis 
Problem

[www.buyfollowz.org]

[buymorelikes.com]
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Other applications:
• Cyber-security (DDoS attacks – distributed 

denial of service)
• Abnormal individuals / social groups

– dysfunctional departments in a company
– Onset of depression/hijacking wrt a FB user
– …
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
• Eigenspokes, and extensions
• Spot strange, individual nodes: oddBall

– Time-evolving graphs
• Supervised: BP
• Conclusions
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Problem
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Given: Find:
1) Outliers
2) Lock-step
3) B.P.
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Solutions
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Given: Find:
1) Outliers
2) Lock-step
3) B.P.

OddBall

SVD
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Solutions, cont’d
• Spectral/tensor methods: spot 

lockstep behavior

• OddBall: strange, single 
nodes

• BP: good for the supervised 
setting (ie., some labels are 
given)
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EigenSpokes
B. Aditya Prakash, Mukund Seshadri, Ashwin 

Sridharan, Sridhar Machiraju and Christos 
Faloutsos: EigenSpokes: Surprising 
Patterns and Scalable Community Chipping 
in Large Graphs, PAKDD 2010, 
Hyderabad, India, 21-24 June 2010.
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EigenSpokes
• Eigenvectors of adjacency matrix 

§ equivalent to singular vectors 
(symmetric, undirected graph)

A = UΣUT

�u1 �ui

N

N

details
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EigenSpokes
• EE plot:
• Scatter plot of 

scores of u1 vs u2
• One would expect

– Many points @ 
origin

– A few scattered 
~randomly u1

u2
90o

15-826 Copyright: C. Faloutsos (2025) 12



CMU SCS

Bipartite Communities!

magnified bipartite community

patents from
same inventor(s)

`cut-and-paste’
bibliography!
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Roadmap

• Introduction – Motivation
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– static graphs
• Eigenspokes, and extensions
• Spot strange, individual nodes: oddBall

– Time-evolving graphs
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Inferring Strange Behavior from
Connectivity Pattern in Social Networks 

Meng Jiang, Peng Cui, Shiqiang Yang
(Tsinghua, Beijing)

Alex Beutel, Christos Faloutsos (CMU)
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Lockstep and Spectral Subspace Plot

• Case #0: No lockstep behavior in random
power law graph of 1M nodes, 3M edges

• Random “Scatter”

Adjacency Matrix Spectral Subspace Plot
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Lockstep and Spectral Subspace Plot

• Case #1: non-overlapping lockstep
• “Blocks” “Rays”

Adjacency Matrix Spectral Subspace Plot
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Lockstep and Spectral Subspace Plot

• Case #2: non-overlapping lockstep
• “Blocks; low density” Elongation

Adjacency Matrix Spectral Subspace Plot
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Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep

Adjacency Matrix Spectral Subspace Plot

??
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Lockstep and Spectral Subspace Plot

• Case #3: non-overlapping lockstep
• “Camouflage” (or “Fame”) Tilting

“Rays”
Adjacency Matrix Spectral Subspace Plot
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Lockstep and Spectral Subspace Plot

• Case #4: ? lockstep
• “?” “Pearls”

Adjacency Matrix Spectral Subspace Plot

?
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Lockstep and Spectral Subspace Plot

• Case #4: overlapping lockstep
• “Staircase” “Pearls”

Adjacency Matrix Spectral Subspace Plot
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
• Eigenspokes, and extensions
• Spot strange, individual nodes: oddBall

– Time-evolving graphs
• Supervised: BP
• Conclusions
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OddBall: Spotting Anomalies 
in  Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos 
Faloutsos

Carnegie Mellon University 
School of Computer Science

PAKDD 2010, Hyderabad, India
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Main idea
For each node, 
• extract ‘ego-net’ (=1-step-away neighbors)
• Extract features (#edges, total weight, etc 

etc)
• Compare with the rest of the population
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What is an egonet?

ego
egonet
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Selected Features
§ Ni: number of neighbors (degree) of ego i
§ Ei: number of edges in egonet i
§ Wi: total weight of egonet i
§ λw,i: principal eigenvalue of the weighted 

adjacency matrix of egonet I
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Near-Clique/Star
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Near-Clique/Star
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Near-Clique/Star
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Andrew Lewis 
(director)

Near-Clique/Star
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
– Time-evolving graphs

• ‘copyCatch’ in FaceBook
• Patterns of IAT
• [tensors]

• Supervised: BP
• Conclusions
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Fraud
• Given

– Who ‘likes’ what page, and 
when

• Find
– Suspicious users and suspicious 

products
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CopyCatch: Stopping Group Attacks by Spotting 
Lockstep Behavior in Social Networks, Alex Beutel, 
Wanhong Xu, Venkatesan Guruswami, Christopher Palow, 
Christos Faloutsos WWW, 2013.
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Fraud
• Given

– Who ‘likes’ what page, and 
when

• Find
– Suspicious users and suspicious 

products

CopyCatch: Stopping Group Attacks by Spotting 
Lockstep Behavior in Social Networks, Alex Beutel, 
Wanhong Xu, Venkatesan Guruswami, Christopher Palow, 
Christos Faloutsos WWW, 2013.

Users Pages

A

B

C

D

E

1

2

3

4

40 Z
Likes

15-826 Copyright: C. Faloutsos (2025) 34



CMU SCS

Our intuition
Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep 
Behavior
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Our intuition
Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep 
Behavior

Users Pages
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Our intuition
Lockstep behavior: Same Likes, same time

Graph Patterns and Lockstep 
Behavior

Users Pages
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MapReduce Overview
Use Hadoop to search for 
many clusters in parallel:

1. Start with randomly seed

2. Update set of Pages and 
center Like times for each 
cluster

3. Repeat until convergence

Users Pages
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Deployment at Facebook
CopyCatch runs regularly (along with many other 
security mechanisms, and a large Site Integrity team)

08/25 09/08 09/22 10/06 10/20 11/03 11/17 12/01
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Date of CopyCatch run

3 months of CopyCatch @ Facebook

#users
caught
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Deployment at Facebook

23%

58%

5%
9%

5%

Fake Accounts
Malicious Browser Extensions
OS Malware
Credential Stealing
Social Engineering

Manually labeled 22 randomly selected 
clusters from February 2013

Most clusters (77%) come from 
real but compromised users

Fake acct
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
– Time-evolving graphs

• ‘copyCatch’ in FaceBook
• Patterns of IAT
• [tensors]

• Supervised: BP
• Conclusions
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RSC: Mining and Modeling Temporal 
Activity in Social Media

Alceu F. Costa*   Yuto Yamaguchi    Agma J. M. Traina

Caetano Traina Jr.    Christos Faloutsos

Universidade
de São Paulo

KDD 2015 – Sydney, 
Australia

*alceufc@icmc.usp.br
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Reddit Dataset
Time-stamp from comments
21,198 users
20 Million time-stamps

Twitter Dataset
Time-stamp from tweets
6,790 users
16 Million time-stamps

Pattern Mining: Datasets

For each user we have: 
 Sequence of postings time-stamps: T = (t1, t2, t3, …)
 Inter-arrival times (IAT) of postings:  (∆1, ∆2, ∆3, …)

t1 t2 t3 t4

∆1 ∆2 ∆3

time
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Guess the IAT pdf
• Gaussian (10’ +/- a bit)?
• Power law? Slope?
• Log-logistic?
• Periodic (spike for 1day, 1 week)?

IAT

PDF
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Human? Robots?

log

linear

15-826 Copyright: C. Faloutsos (2025) 45



CMU SCS

Human? Robots?

log

linear
2’ 3h 1day
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 94%
Sensitivity > 

70%

With strongly 
imbalanced 

datasets

# humans >> # 
bots

Twitter Dataset
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Experiments: Can RSC-Spotter Detect 
Bots?

Precision vs. Sensitivity Curves
Good performance: curve close to the top
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 RSC−Spotter

IAT Hist.
Entropy [6]
Weekday Hist.

All Features

Precision > 96%
Sensitivity > 

47%

With strongly 
imbalanced 

datasets

# humans >> # 
bots

Reddit Dataset
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
– Time-evolving graphs

• ‘copyCatch’ in FaceBook
• Patterns of IAT
• [tensors]

• Supervised: BP
• Conclusions
15-826 Copyright: C. Faloutsos (2025) 53



CMU SCS

Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
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Anomaly detection in time-
evolving graphs

• Anomalous communities in phone call data:
– European country, 4M clients, data over 2 weeks

~200 calls to EACH receiver on EACH day!
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Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, 
Christos Faloutsos, Prithwish Basu, Ananthram Swami,
 Evangelos Papalexakis, Danai Koutra.  Com2: Fast 
Automatic Discovery of Temporal (Comet) Communities. 
PAKDD 2014, Tainan, Taiwan.
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Roadmap

• Introduction – Motivation
• Unsupervised 

– static graphs
– Time-evolving graphs

• Supervised: BP
– Ebay fraud (‘NetProbe’)
– Malware (Polonium)

• Conclusions
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E-bay Fraud detection

w/ Polo Chau &
Shashank Pandit, CMU
[www’07]
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E-bay Fraud detection
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E-bay Fraud detection
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E-bay Fraud detection - NetProbe
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Popular press

And less desirable attention:
• E-mail from ‘Belgium police’ (‘copy of 

your code?’)
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Roadmap

• Introduction – Motivation
• Unsupervised 
• Supervised: BP (Belief Propagation)

– Ebay fraud (‘NetProbe’)
– Malware (Polonium)
– Intuition behind BP

• Conclusions
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Unifying	Guilt-by-Association	Approaches:	
Theorems	and	Fast	Algorithms

Danai Koutra  
U Kang 

Hsing-Kuo Kenneth Pao

Tai-You Ke
Duen Horng (Polo) Chau

Christos Faloutsos

ECML PKDD, 5-9 September 2011, Athens, Greece
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Problem Definition:
GBA techniques

Given: Graph; &         
   few labeled nodes
Find: labels of rest
(assuming network 
effects)
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Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my friends are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them
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Are they related?
• RWR (Random Walk with Restarts)  

– google’s pageRank (‘if my friends are 
important, I’m important, too’)

• SSL (Semi-supervised learning) 
– minimize the differences among neighbors

• BP (Belief propagation) 
– send messages to neighbors, on what you 

believe about them

YES!
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Correspondence of Methods

Method Matrix Unknow
n

known

RWR [I  –    c    AD-1] × x = (1-c)y
SSL [I  + a(D  -   A)] × x = y

FABP [I  + a   D  - c’A] × bh = φh
0  1  0
1  0  1
0  1  0

   ?
0

 1
 1

1
     1 

         
1

d1
d2 

      d3
final 

labels/ 
beliefs

prior 
labels/ 
beliefs

adjacency 
matrix
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Insights:
• Patterns          Anomalies

• Large datasets reveal patterns/outliers that 
are invisible otherwise
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Solutions
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Given: Find:
1) Outliers
2) Lock-step
3) B.P.

OddBall

SVD
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Solutions, cont’d
• Spectral/tensor methods: spot 

lockstep behavior

• OddBall: strange, single 
nodes

• BP: good for the supervised 
setting (ie., some labels are 
given)

15-826 Copyright: C. Faloutsos (2025) 77

un
-s

up
er

vi
se

d
se

m
i-s

up
er

vi
se

d


