

15-826: Multimedia (Databases) and Data Mining

Lecture #26: Graph mining - patterns

Christos Faloutsos

Must-read Material – 1-of-2

- [Graph minining textbook] Deepayan
 Chakrabarti and Christos Faloutsos <u>Graph</u>
 <u>Mining: Laws, Tools and Case Studies</u>,
 Springer, 2012 (<u>internal evaluation copy</u>)
 - Part I (patterns)

Must-read Material 2-of-2

- Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM 1999.
- R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World Wide Web Nature, 401, 130-131 (1999).
- Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47 (2002).
- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Problem

• Are real graphs random?

Conclusions

- Are real graphs random?
- NO!
 - Static patterns
 - Small diameters
 - Skewed degree distribution
 - Shrinking diameters
 - Weighted
 - Time-evolving

- Are real graphs random?
- Many power laws log-logistic

 Take logarithms

15-826

Main outline

- Introduction
- Indexing
- Mining
 - Graphs patterns
 - Graphs generators and tools
 - Association rules

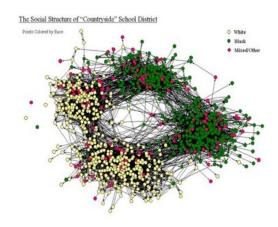
— ...

Carnegie Mellon

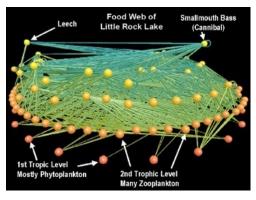
Outline

- Introduction Motivation
- Problem: Patterns in graphs
- Problem#2: Scalability
- Conclusions

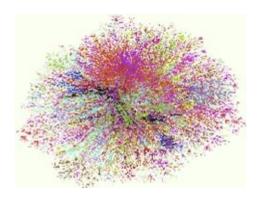
Graphs - why should we care?



Friendship Network [Moody '01]



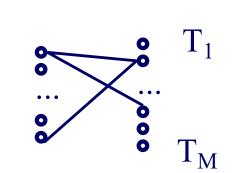
Food Web [Martinez '91]



Internet Map [lumeta.com]

Graphs - why should we care?

• IR: bi-partite graphs (doc-terms)



web: hyper-text graph

• ... and more:

Graphs - why should we care?

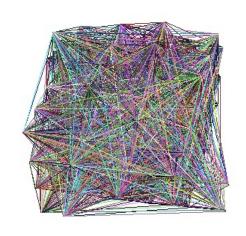
- 'viral' marketing
- web-log ('blog') news propagation
- computer network security: email/IP traffic and anomaly detection

•

Outline

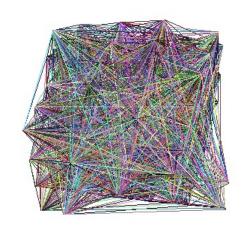
- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs
 - Time evolving graphs
 - Problem#2: Scalability
 - Conclusions

Problem #1 - network and graph mining



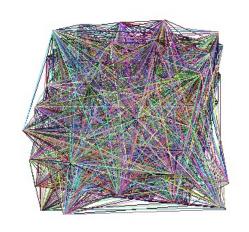
- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?

Problem #1 - network and graph mining



- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?
 - anomalies (rarities) <-> patterns

Problem #1 - network and graph mining



- What does the Internet look like?
- What does FaceBook look like?
- What is 'normal' / 'abnormal'?
- which patterns/laws hold?

- anomalies (rarities) <-> patterns
- Large datasets reveal patterns/anomalies that may be invisible otherwise...

Graph mining

• Are real graphs random?

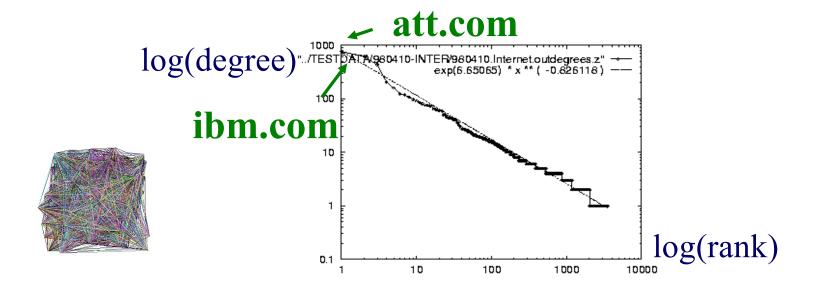
Laws and patterns

- Are real graphs random?
- A: NO!!
 - Diameter ('6 degrees', 'Kevin Bacon')
 - in- and out- degree distributions
 - other (surprising) patterns

• So, let's look at the data

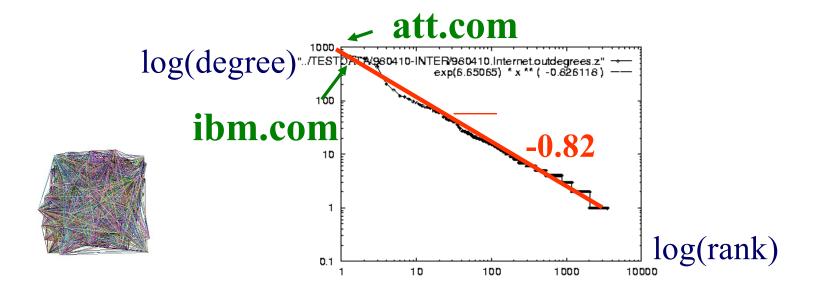
• Power law in the degree distribution [SIGCOMM99]

internet domains



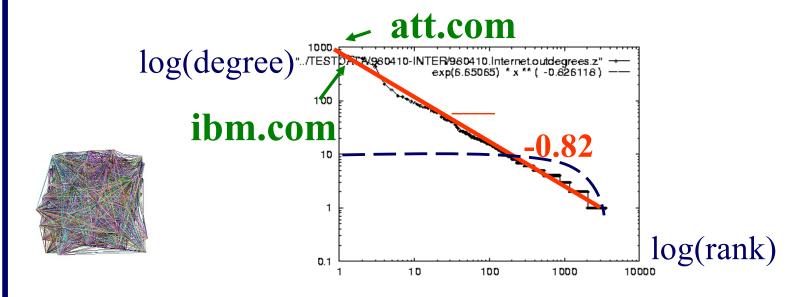
• Power law in the degree distribution [SIGCOMM99]

internet domains



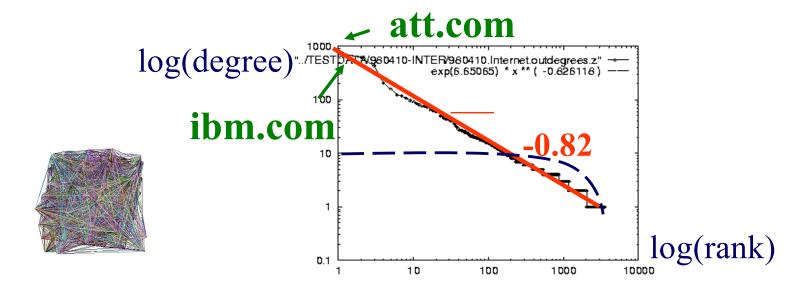
• Q: So what?

internet domains



15-826

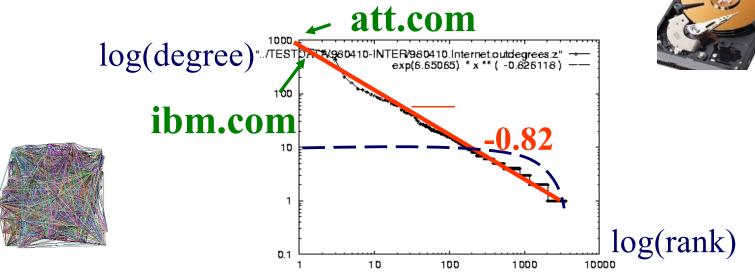
- Q: So what? = friends of friends (F.O.F.)
- A1: # of two-step-away pairs: internet domains

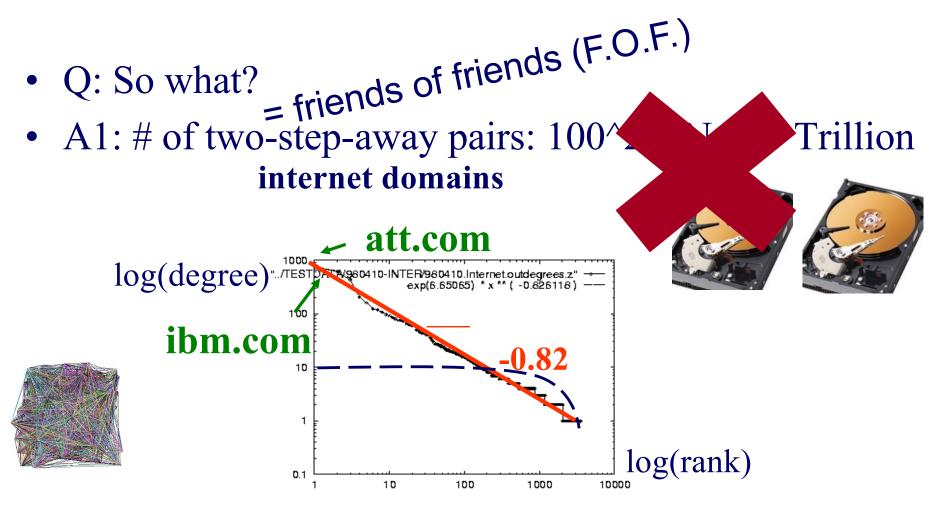


• Q: So what? = friends of friends (F.O.F.)

• A1: # of two-step-away pairs: 100^2 * N= 10 Trillion

internet domains



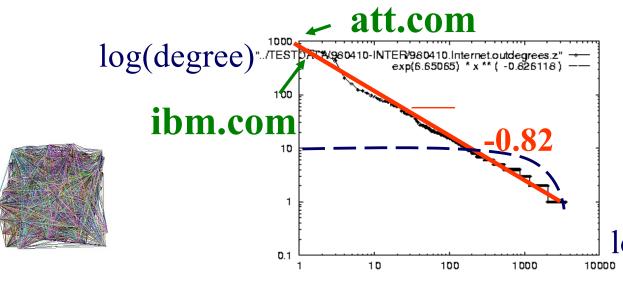


Gaussian trap

Solution# S.1

• Q: So what? = friends of friends (F.O.F.)

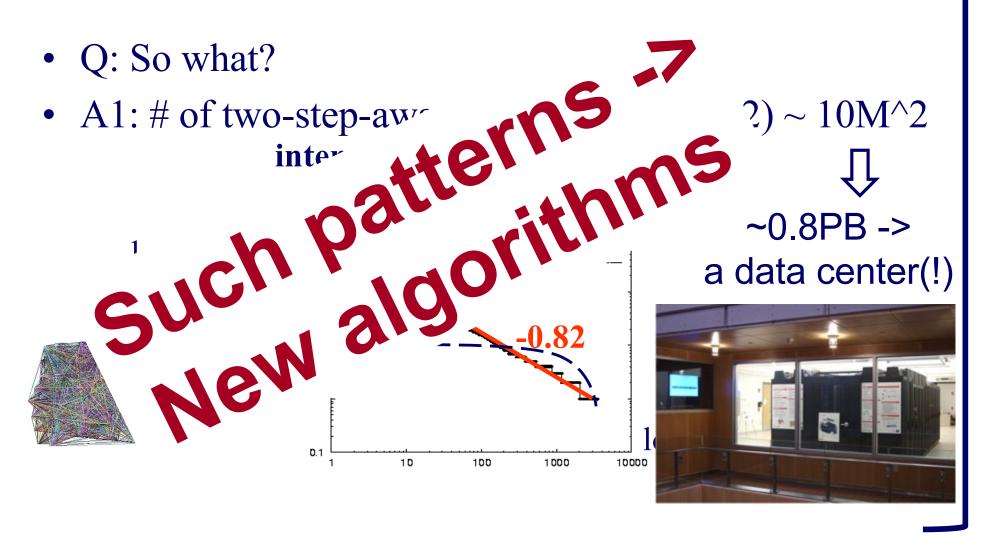
• A1: # of two-step-away pairs: O(d_max ^2) ~ 10M^2 internet domains



~0.8PB -> a data center(!)

Gaussian trap

Solution# S.1



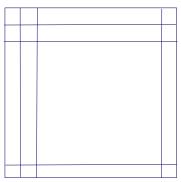
• $O(N^2)$ algorithms are ~intractable - N=1B

• N^2 seconds = 31B years (>2x age of

universe)

1B

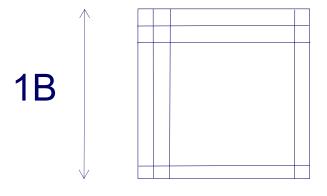
1B



• $O(N^2)$ algorithms are ~intractable - N=1B

31M

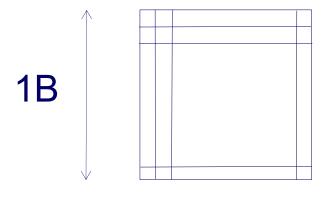
- N^2 seconds = 31B years
- 1,000 machines



• $O(N^2)$ algorithms are ~intractable - N=1B

31K

- N^2 seconds = 31B years
- 1M machines

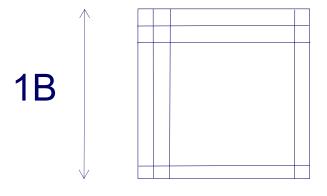


• $O(N^2)$ algorithms are ~intractable - N=1B

3

• N^2 seconds = 31B years

• 10B machines ~ \$10Trillion



15-826

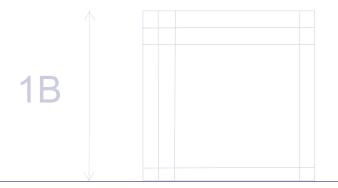
Copyright: C. Faloutsos (2025)

• $O(N^2)$ algorithms are ~intractable - N=1B

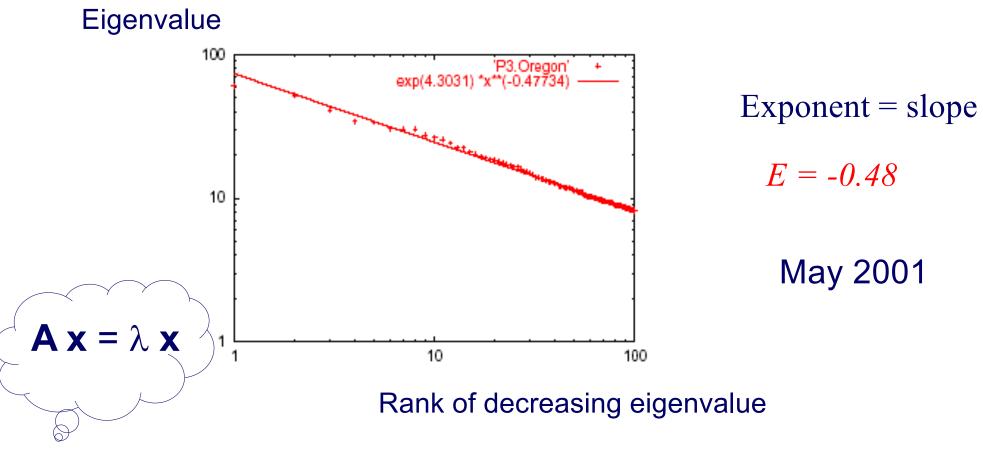
And parallelism might not help

• N^2 seconds = 31B years

• 10B machines ~ \$10Trillion



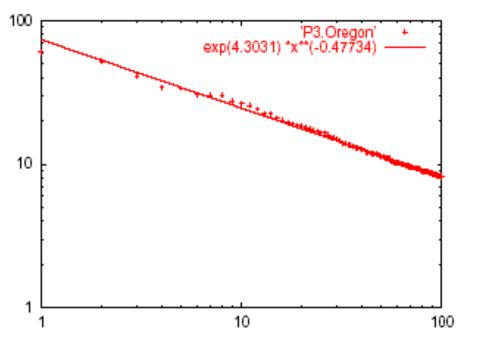
Solution# S.2: Eigen Exponent E



• A2: power law in the eigenvalues of the adjacency matrix

Solution# S.2: Eigen Exponent E

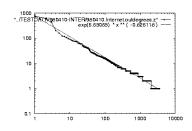
Eigenvalue



Exponent = slope

E = -0.48

May 2001



Rank of decreasing eigenvalue

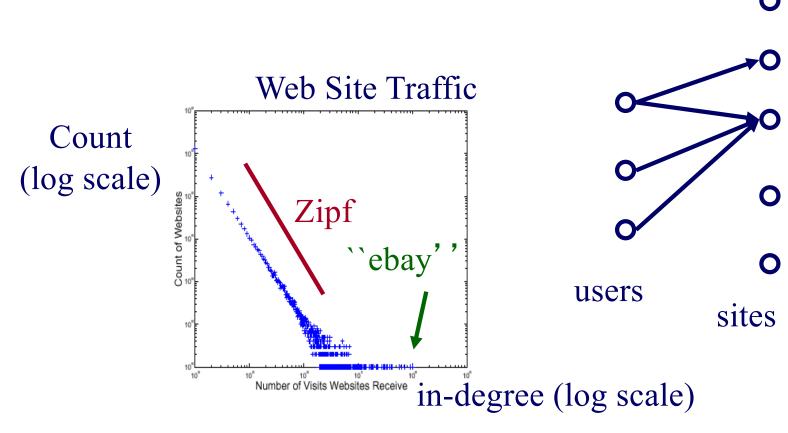
• [Mihail, Papadimitriou '02]: slope is ½ of rank exponent

But:

How about graphs from other domains?

More power laws:

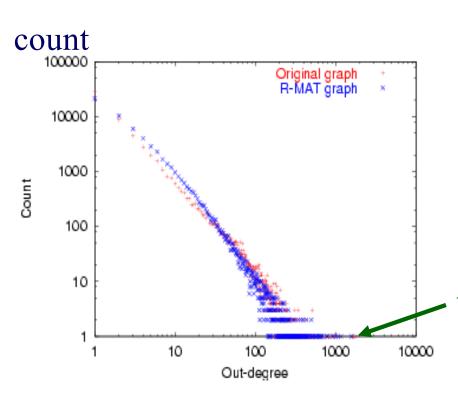
• web hit counts [w/ A. Montgomery]



15-826

Copyright: C. Faloutsos (2025)

epinions.com



who-trusts-whom
 [Richardson +
 Domingos, KDD
 2001]

trusts-2000-people user

(out) degree

And numerous more

- # of sexual contacts
- Income [Pareto] –' 80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants')
- Size of files of a user
- •
- 'Black swans'

List of Static Patterns

- S.1 degree
- ✓ S.2 eigenvalues
 - S.3 small diameter
 - S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

In textbook

S.3 small diameters

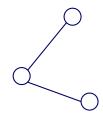
- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

List of Static Patterns

- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
 - S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

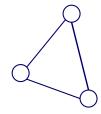
In textbook

Solution# S.4: Triangle 'Laws'



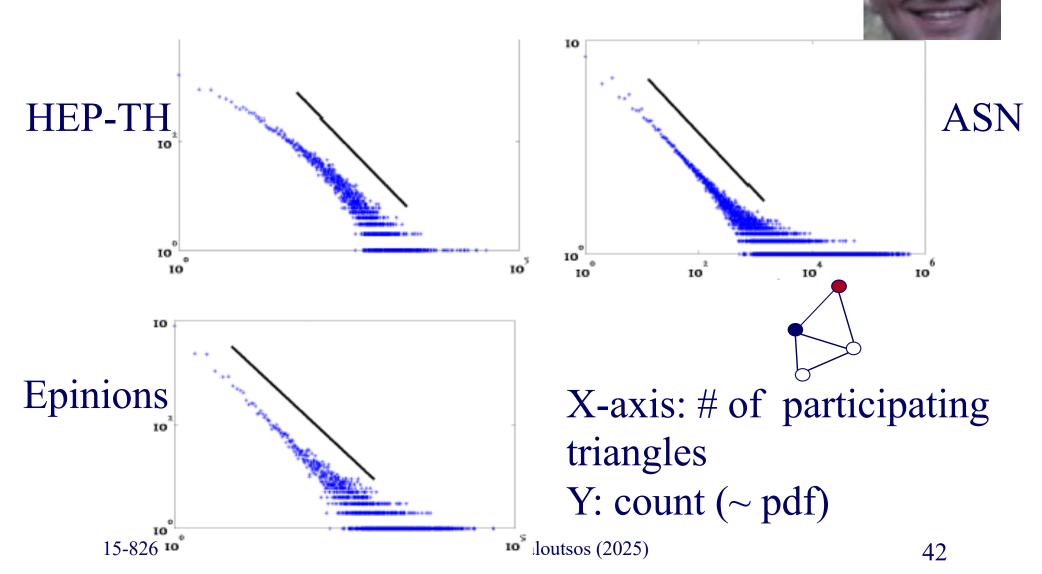
Real social networks have a lot of triangles

Solution# S.4: Triangle 'Laws'

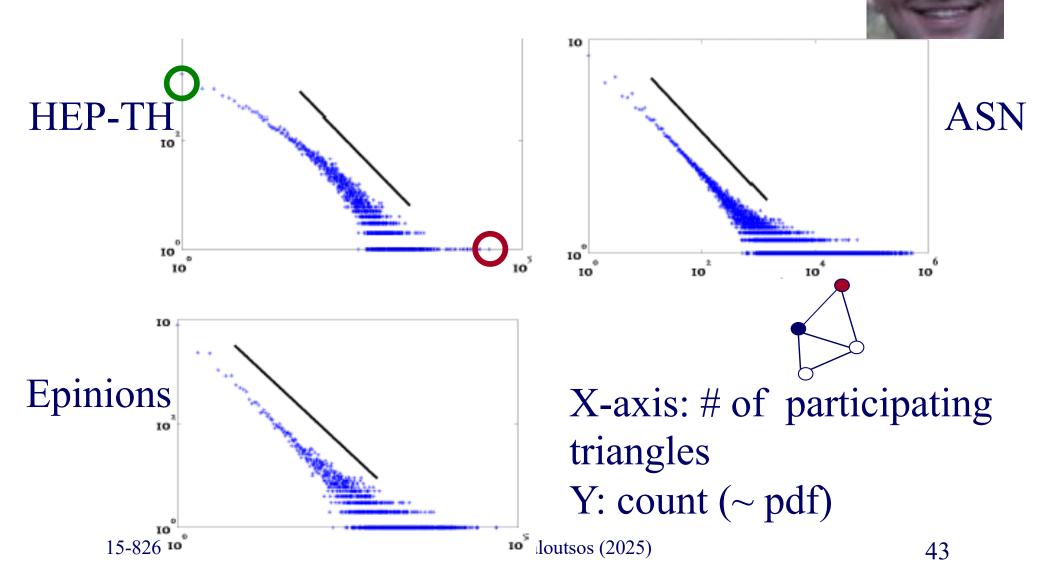


- Real social networks have a lot of triangles
 - Friends of friends are friends
- Any patterns?

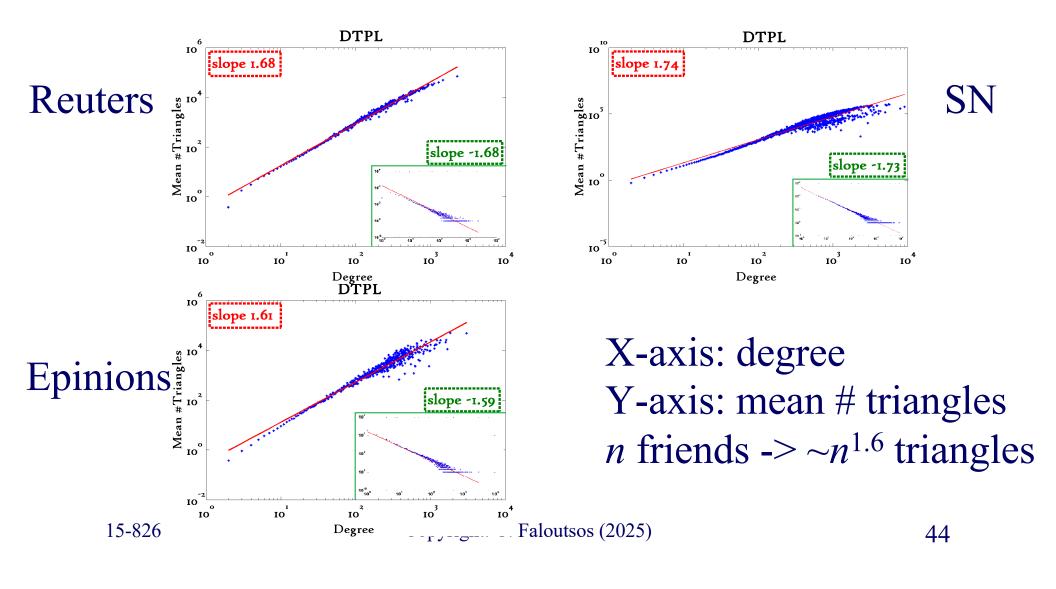
Triangle Law: #S.4 [Tsourakakis ICDM 2008]



Triangle Law: #S.4 [Tsourakakis ICDM 2008]



Triangle Law: #S.5 [Tsourakakis ICDM 2008]



Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos) Q: Can we do that quickly?

details

Triangle Law: Computations [Tsourakakis ICDM 2008]

But: triangles are expensive to compute (3-way join; several approx. algos)

Q: Can we do that quickly?

A: Yes!

#triangles = 1/6 Sum (λ_i^3)

(and, because of skewness (S2),

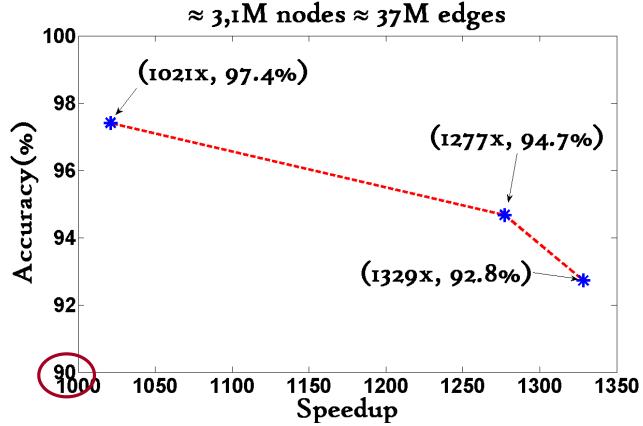
we only need the top few eigenvalues!

detail

Triangle Law: Computations

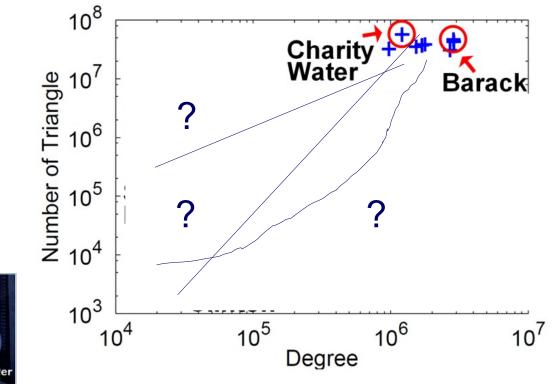
[Tsourakakis ICDM 2008]

Wikipedia graph 2006-Nov-04



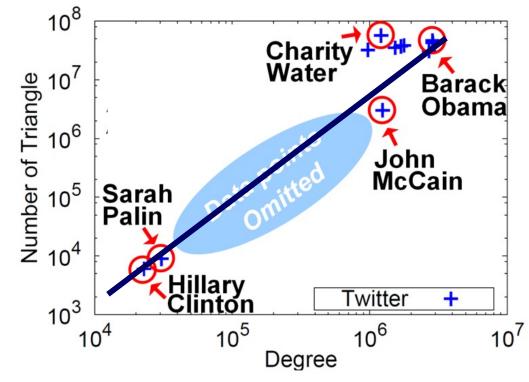
1000x+ speed-up, >90% accuracy

Copyright: C. Faloutsos (2025)

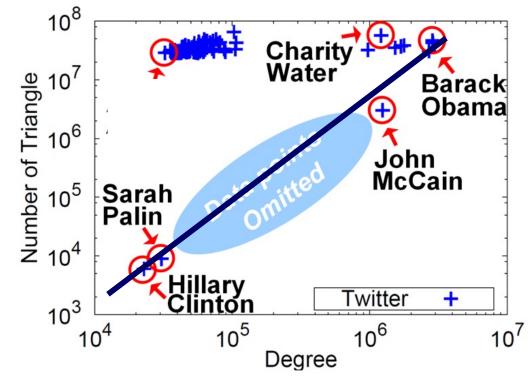


Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]

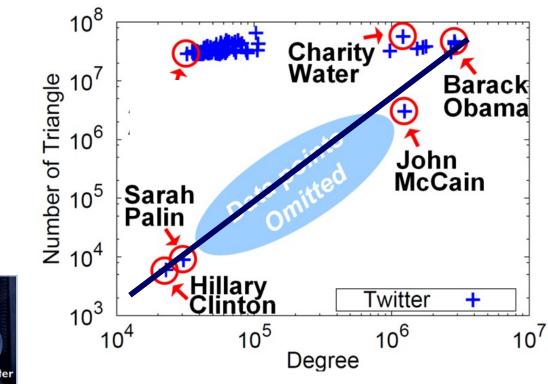


Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]



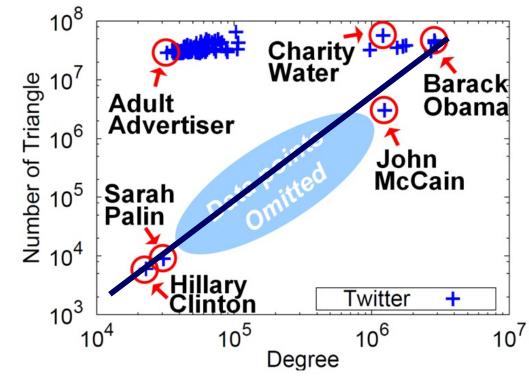
Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]



Anomalous nodes in Twitter(~ 3 billion edges)

[U Kang, Brendan Meeder, +, PAKDD'11]



Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]

Copyright: C. Faloutsos (2025)

List of Static Patterns

- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
- ✓ S.4/5 Triangle laws
 - (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

In textbook

Generalized Iterated Matrix Vector Multiplication (GIMV)

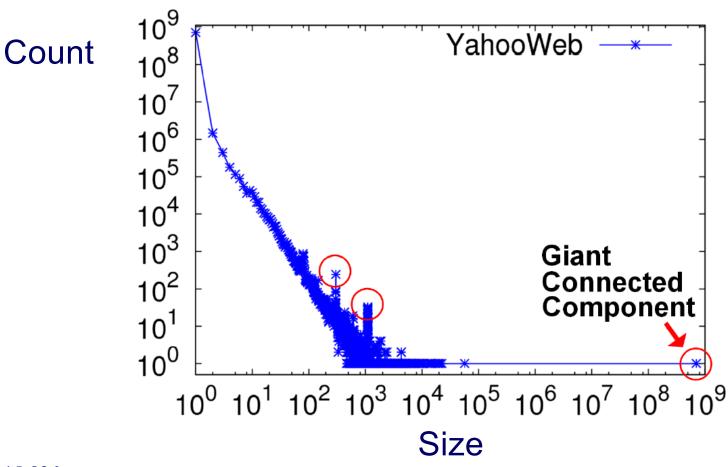
<u>PEGASUS: A Peta-Scale Graph Mining</u> <u>System - Implementation and Observations</u>.

U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.

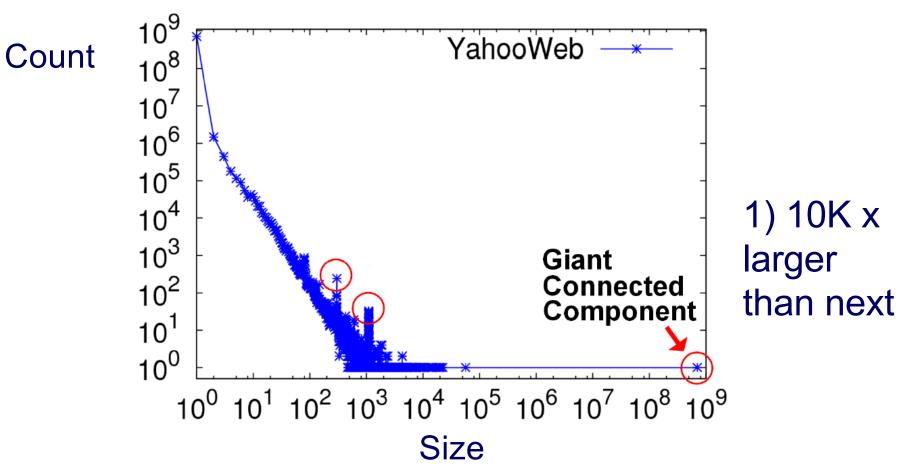
(ICDM) 2009, Miami, Florida, USA.

Best Application Paper (runner-up) and 10-yr highest impact award (2018)

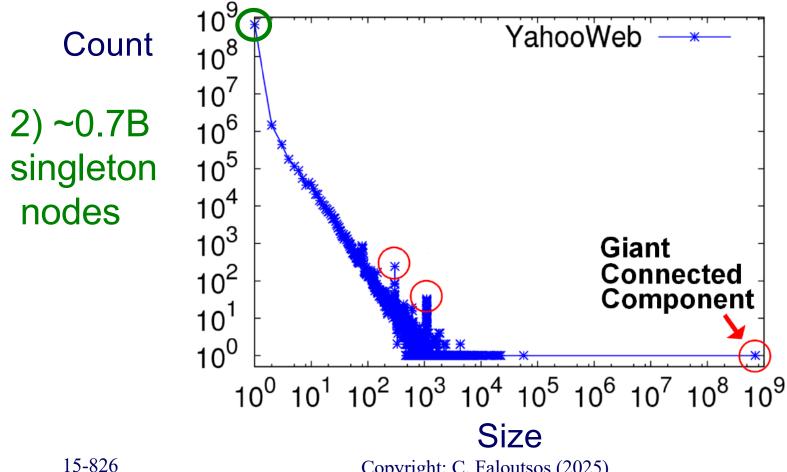
Connected Components – 4 observations:



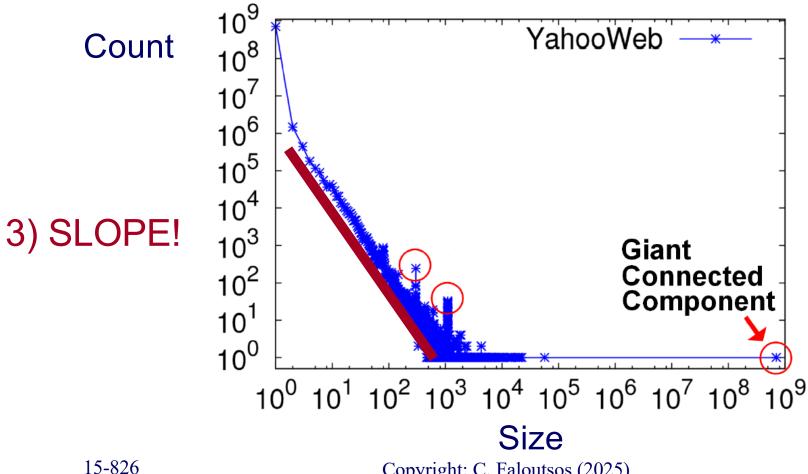
Connected Components



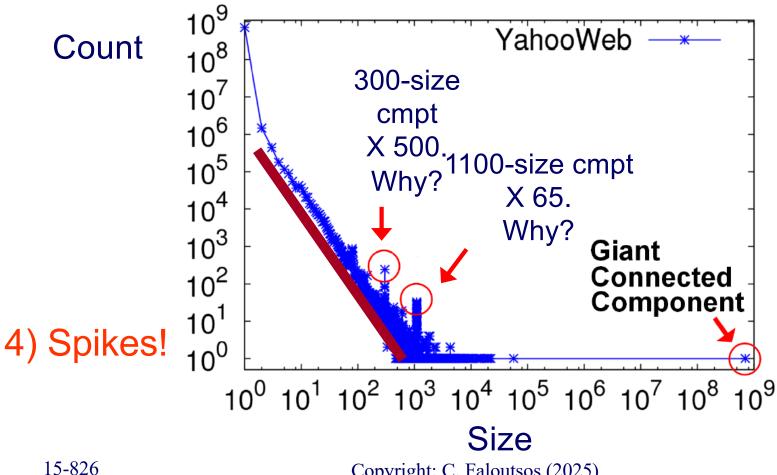
Connected Components



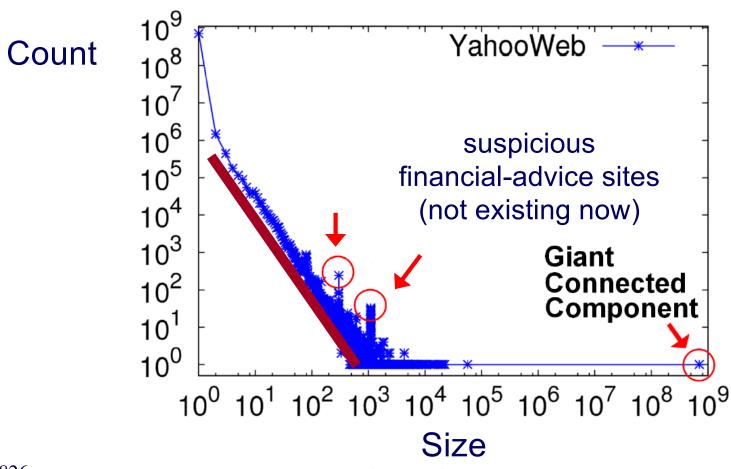
Connected Components



Connected Components

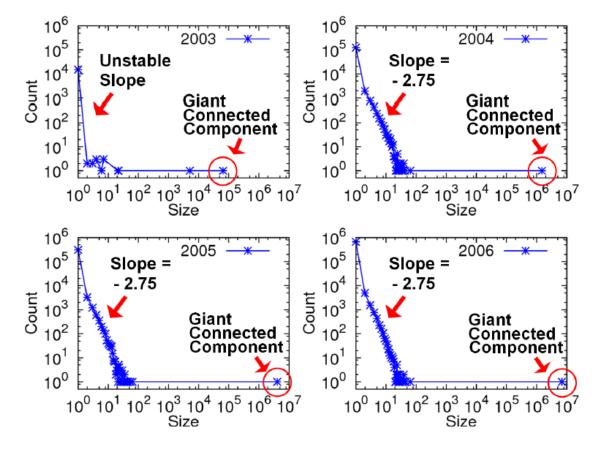


Connected Components



S.6: persists over time

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges



Stable tail slope after the gelling point

In textbook

List of Static Patterns

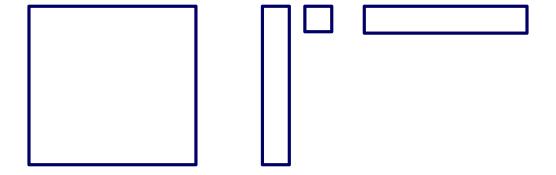
- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
- ✓ S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
 - (S.7) eigen plots
 - (S.8) radius plot

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: *EigenSpokes: Surprising Patterns and Scalable Community Chipping in Large Graphs*, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

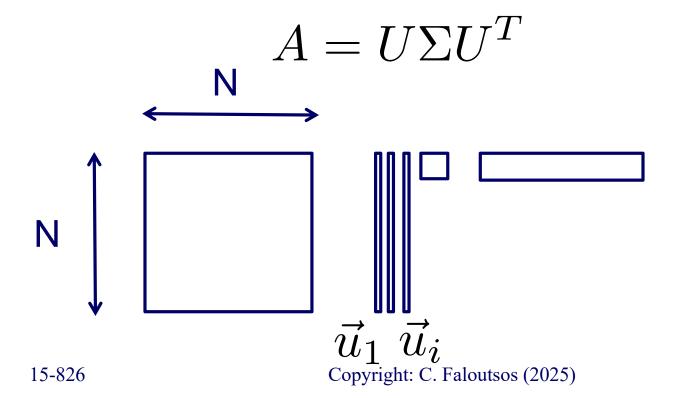
Useful for fraud detection!

- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

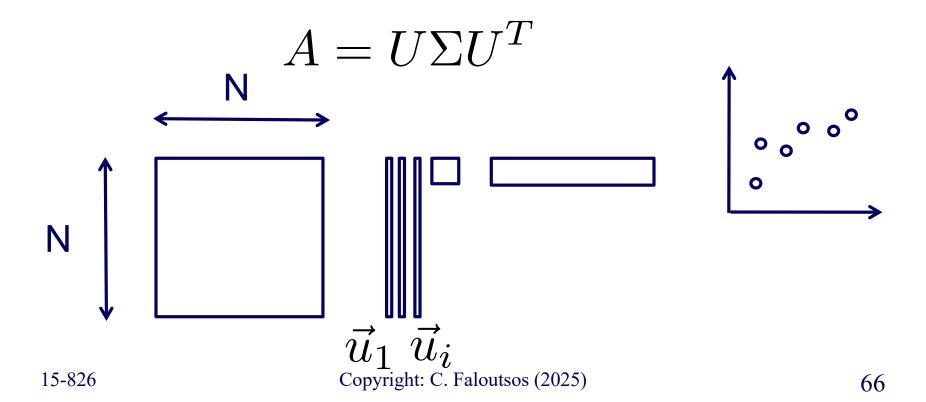
$$A = U\Sigma U^T$$



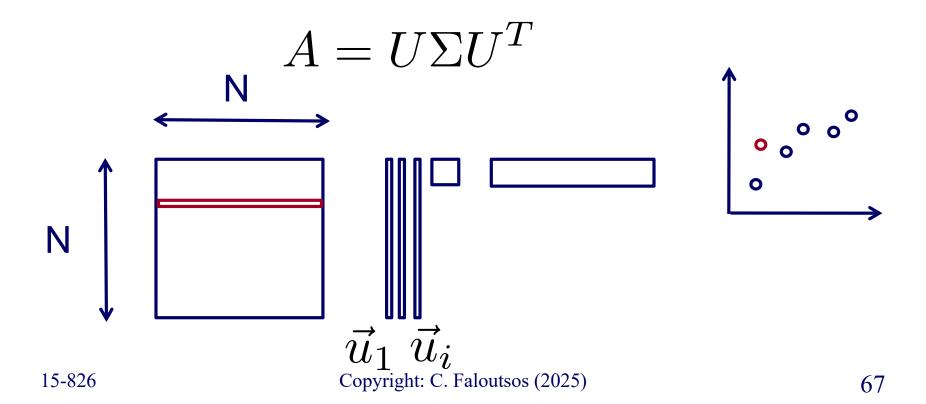
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



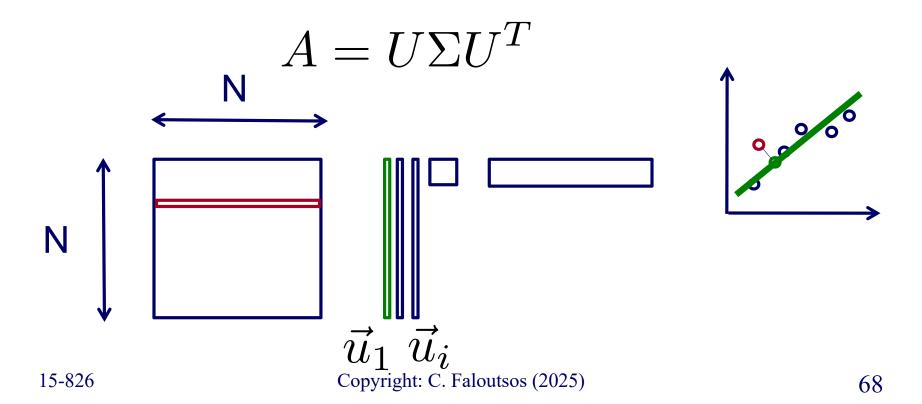
- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)

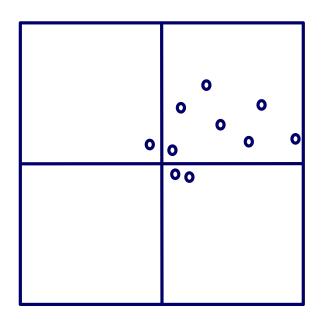


- Eigenvectors of adjacency matrix
 - equivalent to singular vectors (symmetric, undirected graph)



• EE plot:

- 2nd Principal component u2
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @ origin
 - A few scattered ~randomly

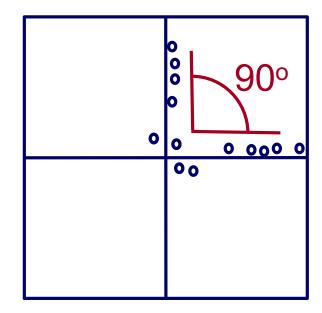


u1 1st Principal

component

u2

- EE plot:
- Scatter plot of scores of u1 vs u2
- One would expect
 - Many points @origin
 - A fe ttered ~r it. mly

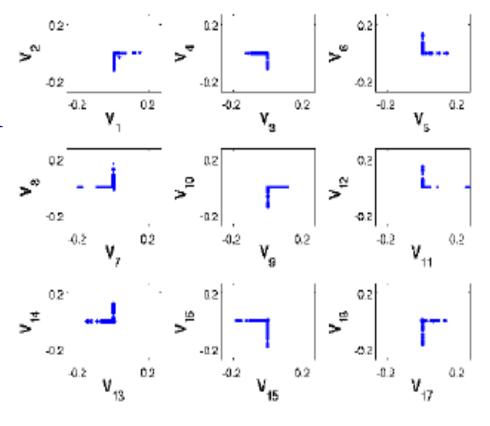


u1

EigenSpokes - pervasiveness

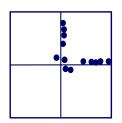
- Present in mobile social graph
 - across time and space

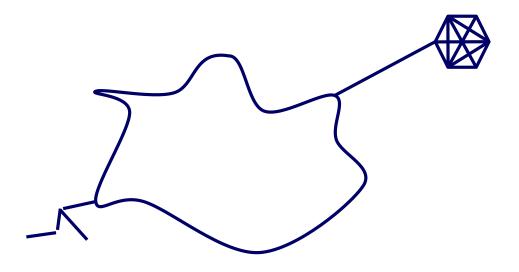
• Patent citation graph



EigenSpokes - explanation

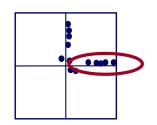
Near-cliques, or nearbipartite-cores, loosely connected

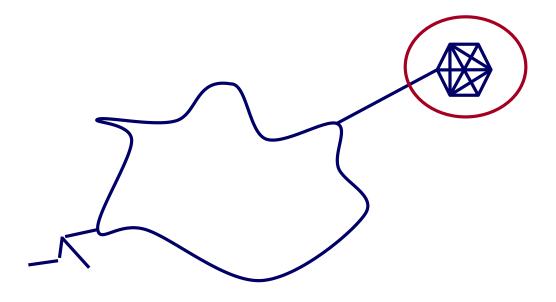




EigenSpokes - explanation

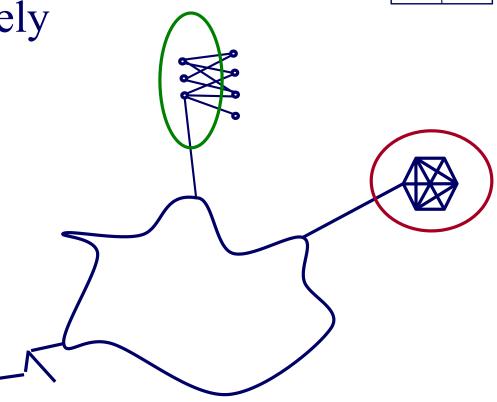
Near-cliques, or nearbipartite-cores, loosely connected





EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

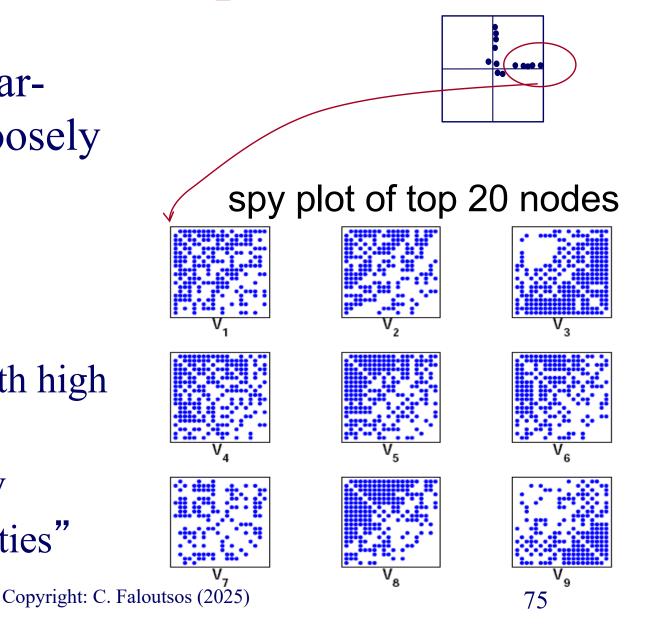


EigenSpokes - explanation

Near-cliques, or nearbipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

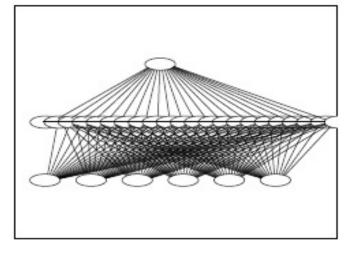


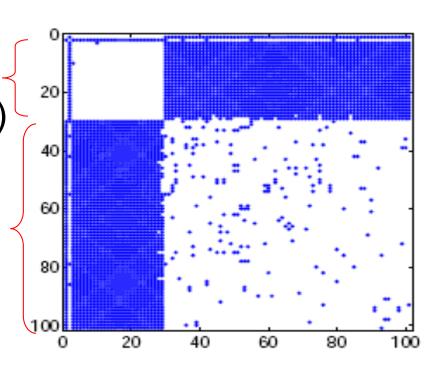
Bipartite Communities!

patents from same inventor(s)

`cut-and-paste' bibliography!

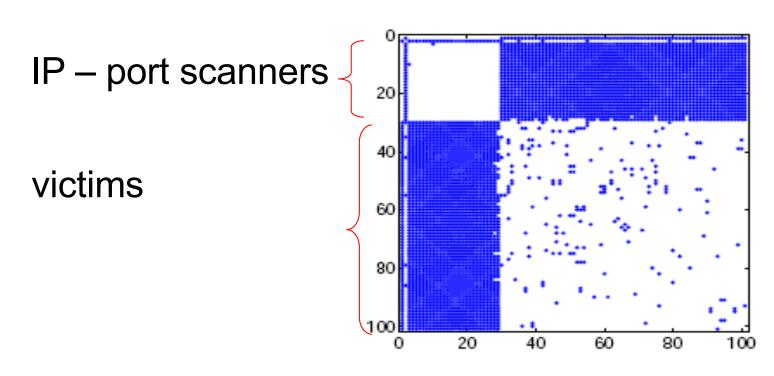
magnified bipartite community





Useful for fraud detection!

Bipartite Communities!



Useful for fraud detection!

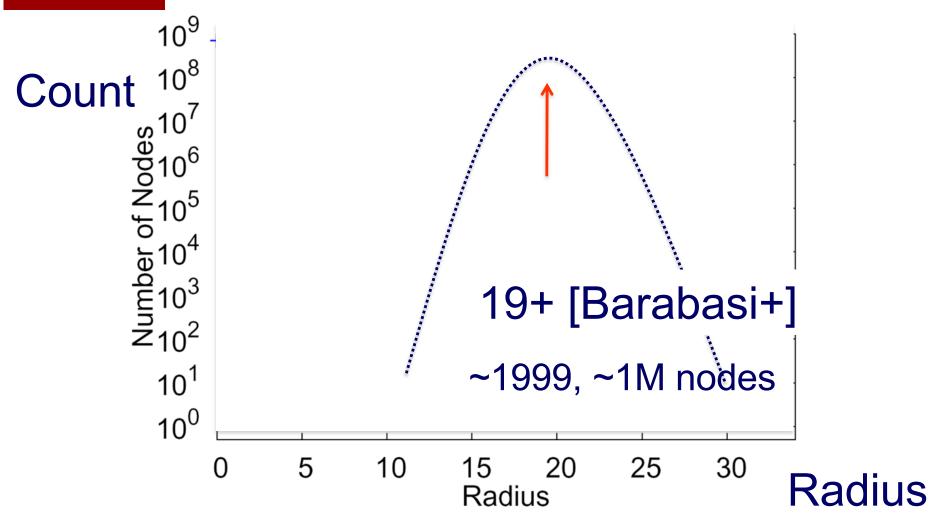
In textbook

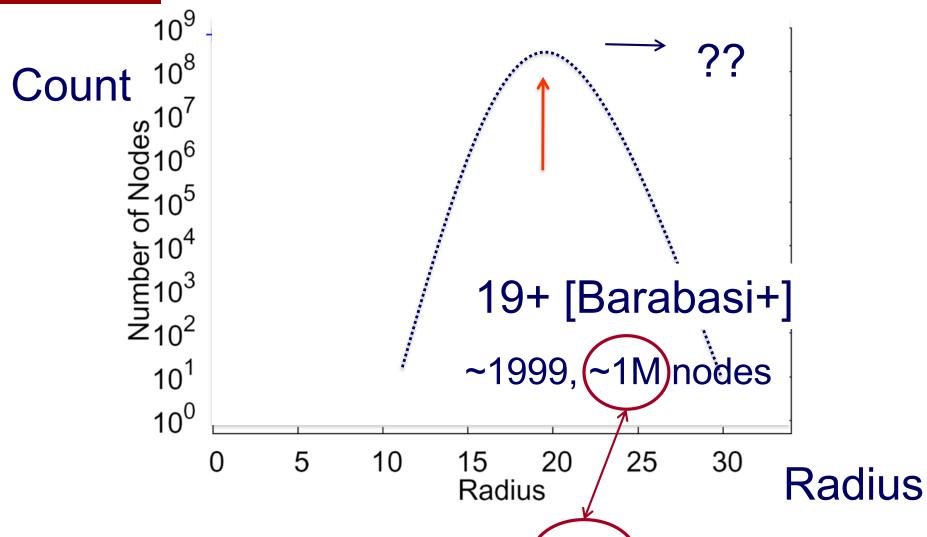
List of Static Patterns

- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
- ✓ S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- ✓ (S.7) eigen plots
 - (S.8) radius plot

HADI for diameter estimation

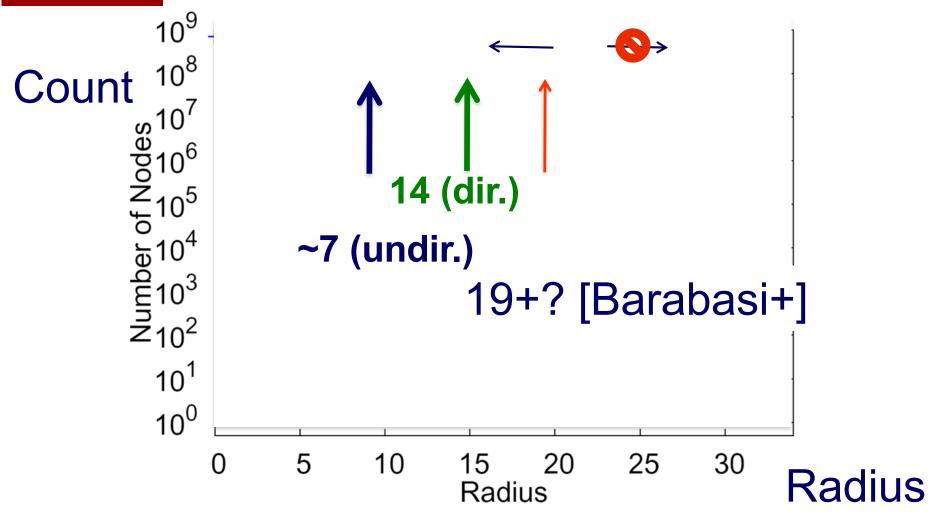
- Radius Plots for Mining Tera-byte Scale
 Graphs U Kang, Charalampos Tsourakakis,
 Ana Paula Appel, Christos Faloutsos, Jure
 Leskovec, SDM'10
- Naively: diameter needs $O(N^{**2})$ space and up to $O(N^{**3})$ time prohibitive $(N\sim1B)$
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
 - Several optimizations -> 5x faster





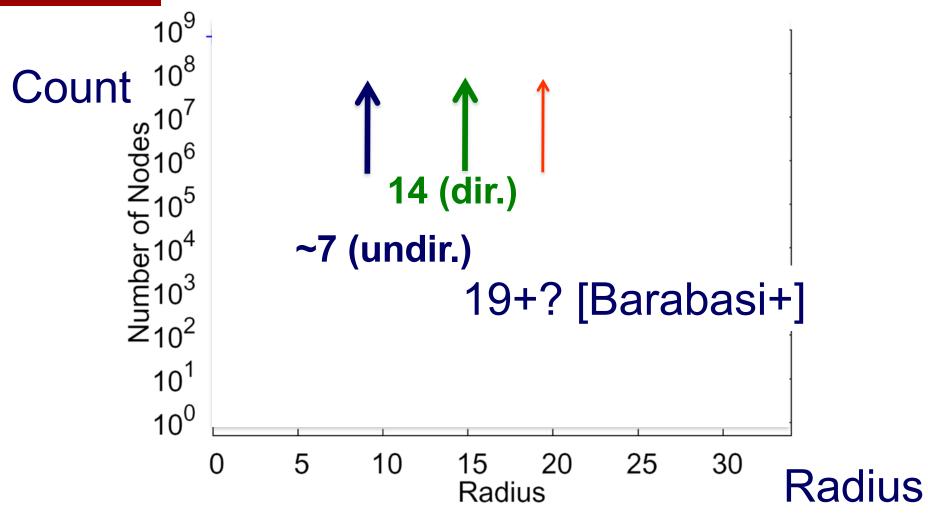
YahooWeb graph (120Gb, 1.4B) hodes, 6.6 B edges)

Largest publicly available graph ever studied.

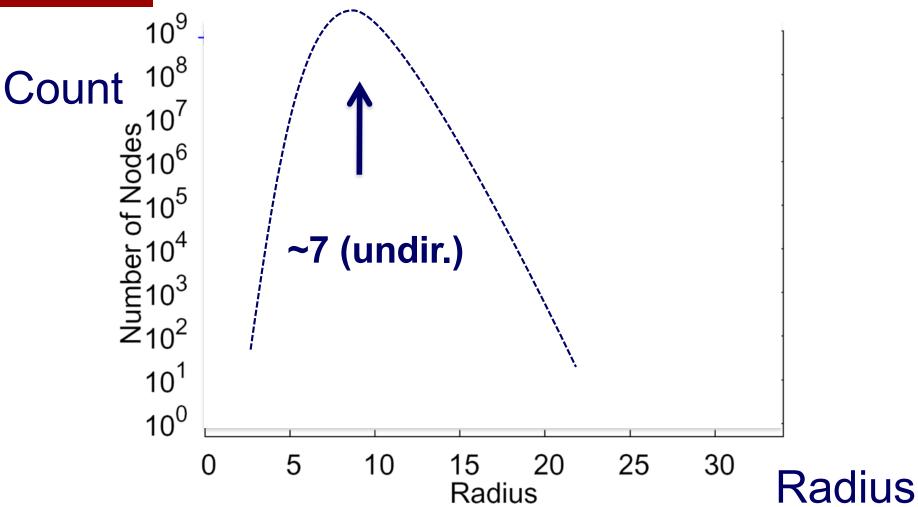


YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

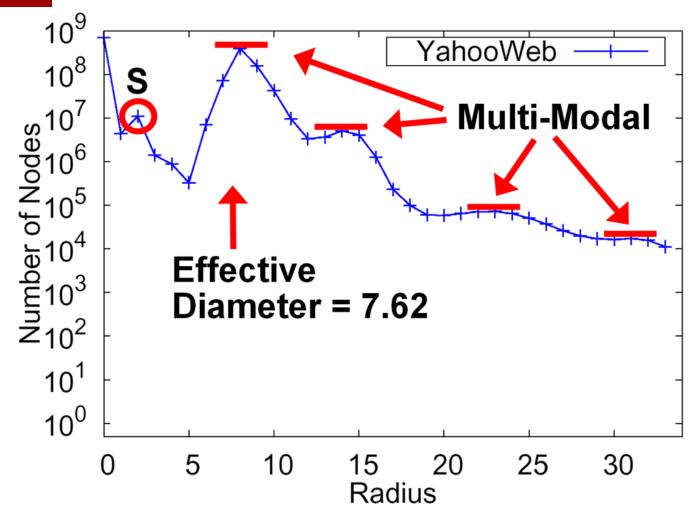
Largest publicly available graph ever studied.



- •7 degrees of separation (!)
- Diameter: shrunk



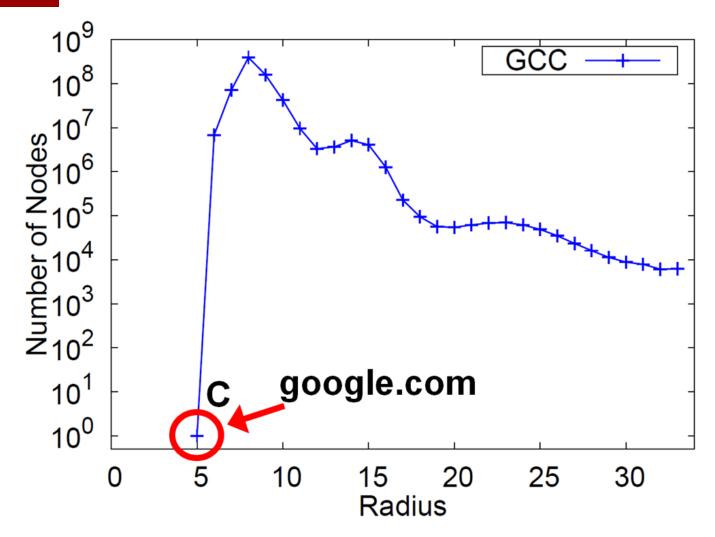
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) Q: Shape?



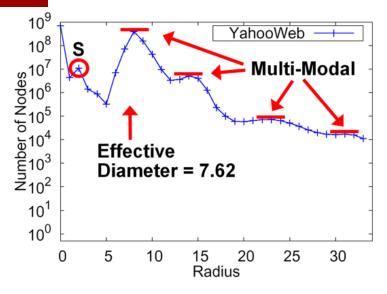
YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)

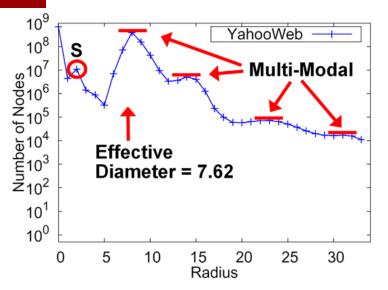
15-826

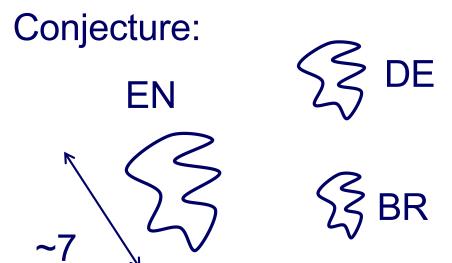


Radius Plot of GCC of YahooWeb.

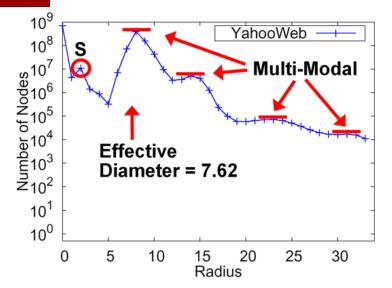


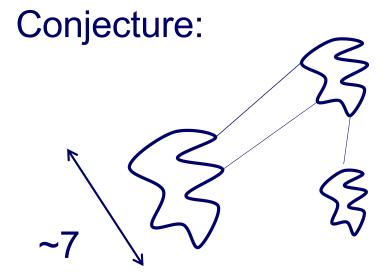
- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.





- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.





- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores.

In textbook

List of Static Patterns

- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
- ✓ S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- ✓ (S.7) eigen plots
- (S.8) radius plot
 - Other observations / patterns?

In textbook

List of Static Patterns

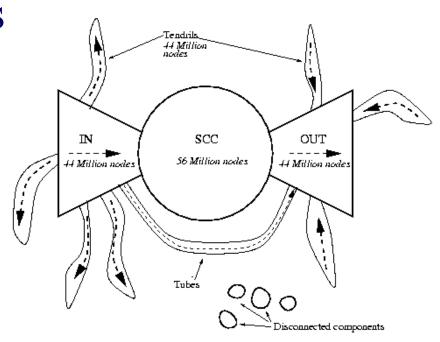
- S.1 degree
- ✓ S.2 eigenvalues
- S.3 small diameter
- S.4/5 Triangle laws
- (S.6) NLCC non-largest conn. components
- (S.7) eigen plots
- (S.8) radius plot
 - Other observations / patterns?

Yes!

- Small diameter (~ constant!)
 - six degrees of separation / 'Kevin Bacon'
 - small worlds [Watts and Strogatz]

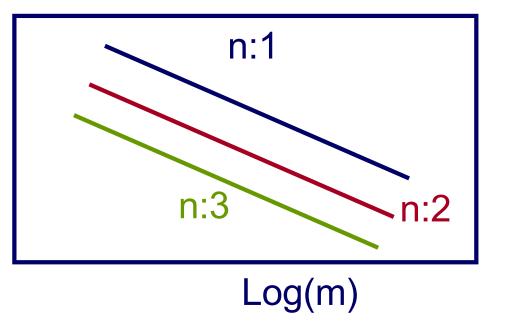
- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'

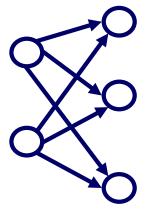
disconnected components



• power-laws in communities (bi-partite cores) [Kumar+, '99]

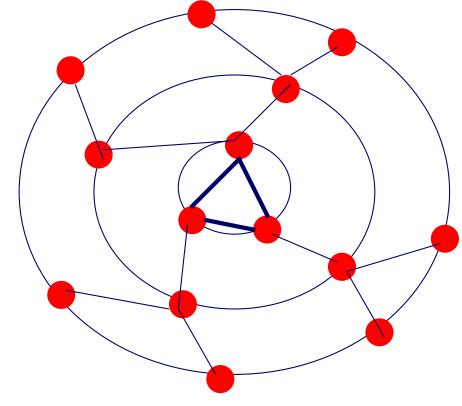
Log(count)





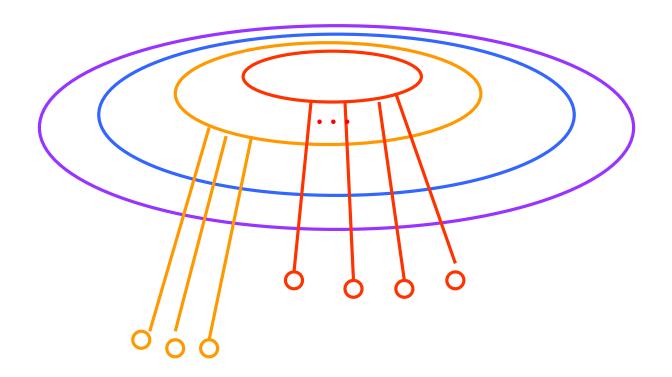
2:3 core (m:n core)

- "Jellyfish" for Internet [Tauro+ '01]
- core: ~clique
- ~5 concentric layers
- many 1-degree nodes



15-826

Jellyfish model [Tauro+]



A Simple Conceptual Model for the Internet Topology, L. Tauro, C. Palmer, G. Siganos, M. Faloutsos, Global Internet, November 25-29, 2001

Jellyfish: A Conceptual Model for the AS Internet Topology G. Siganos, Sudhir L Tauro, M. Faloutsos, J. of Communications and Networks, Vol. 8, No. 3, pp 339-350, Sept. 2006.

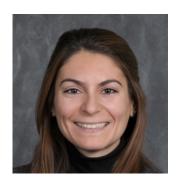
Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - degree, diameter, eigen,
 - Triangles

- Weighted graphs
- Time evolving graphs
- Problem#2: Scalability
- Conclusions

Observations on weighted graphs?

• A: yes - even more 'laws'!



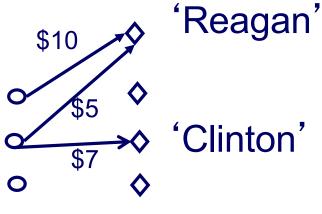
M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

Observation W.1: Fortification

Q: How do the weights of nodes relate to degree?

Observation W.1: Fortification

More donors, more \$?

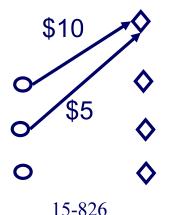


15-826

Observation W.1: fortification: Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': 1.01 < iw < 1.26

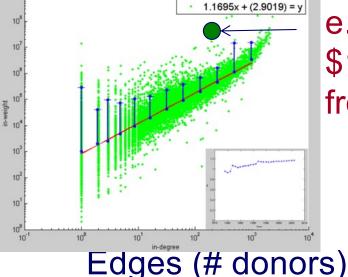
More donors, even more \$



In-weights (\$)

Orgs-Candidates

e.g. John Kerry, \$10M received, from 1K donors



Copyright: C. Faloutsos (2025)

101

Outline

- Introduction Motivation
- Problem: Patterns in graphs
 - Static graphs
 - Weighted graphs

- Time evolving graphs
- Problem#2: Scalability
- Conclusions

Problem: Time evolution

 with Jure Leskovec (CMU -> Stanford)

and Jon Kleinberg (Cornell – sabb. @ CMU)

List of Dynamic Patterns

- D.1 diameter
- D.2 densification
- D.3 gelling point
- D.4 NLCC over time
- D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

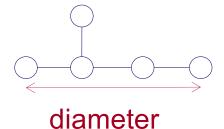
In textbook

D.1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
 - [diameter \sim O($N^{1/3}$)]

- diameter \sim O(log N)
- diameter \sim O(log log N)

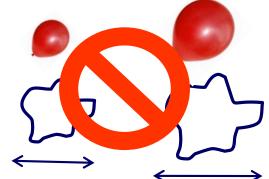
What is happening in real data?



D.1 Evolution of the Diameter

 Prior work on Power Law graphs hints at slowly growing diameter:

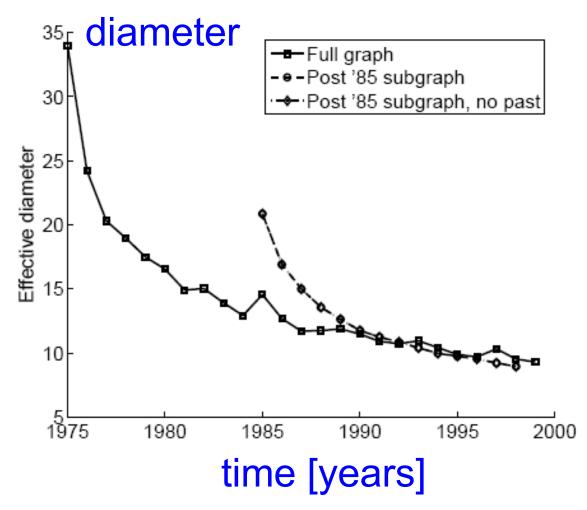
- [diameter $\sim O(N^{1/3})$]
- diameter ~ (lex)
- diameter ~ O(105 10g N)



- What is happening in real data?
- Diameter shrinks over time

D.1 Diameter – "Patents"

- Patent citation network
- 25 years of data
- @1999
 - -2.9 M nodes
 - 16.5 M edges



List of Dynamic Patterns

- D.1 diameter
 - D.2 densification
 - D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

• Q: what is your guess for

$$E(t+1) = ?2 * E(t)$$

D.2 Temporal Evolution of the Graphs

- N(t) ... nodes at time t
- E(t) ... edges at time t
- Suppose that

$$N(t+1) = 2 * N(t)$$

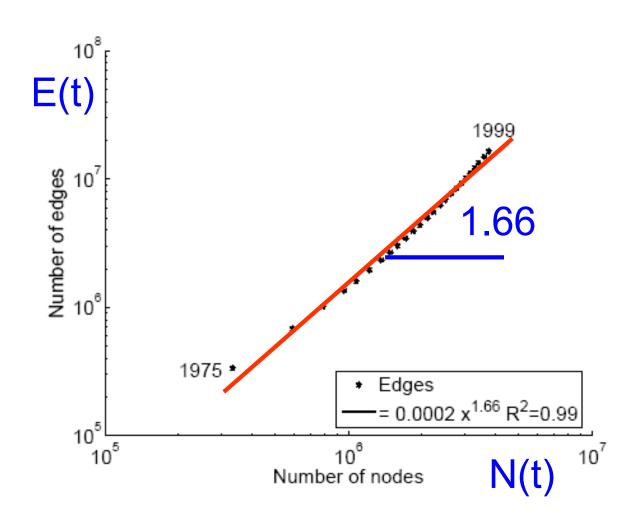
• Q: what is your guess for

$$E(t+1) = 2 * E(t)$$

- A: over-doubled!
 - But obeying the ``Densification Power Law''

D.2 Densification – Patent Citations

- Citations among patents granted
- @1999
 - -2.9 M nodes
 - 16.5 M edges
- Each year is a datapoint



List of Dynamic Patterns

• D.1 diameter

✓ • D.2 densification

- D.3 gelling point
- D.4 NLCC over time
- D.5 Eigenvalue over time
- D.6 Popularity over time
- D.7 phonecall duration

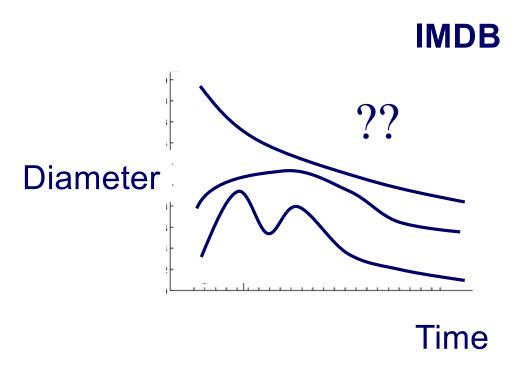
In textbook

More on Time-evolving graphs

M. McGlohon, L. Akoglu, and C. Faloutsos Weighted Graphs and Disconnected Components: Patterns and a Generator. SIG-KDD 2008

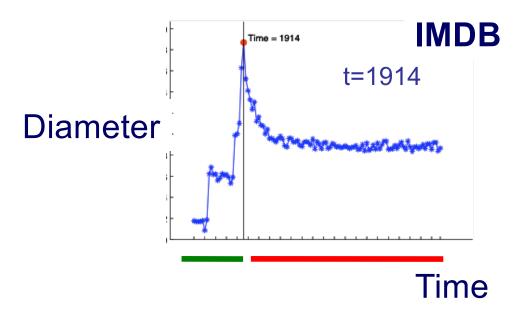
D.3 Gelling Point

• Diameter, over time



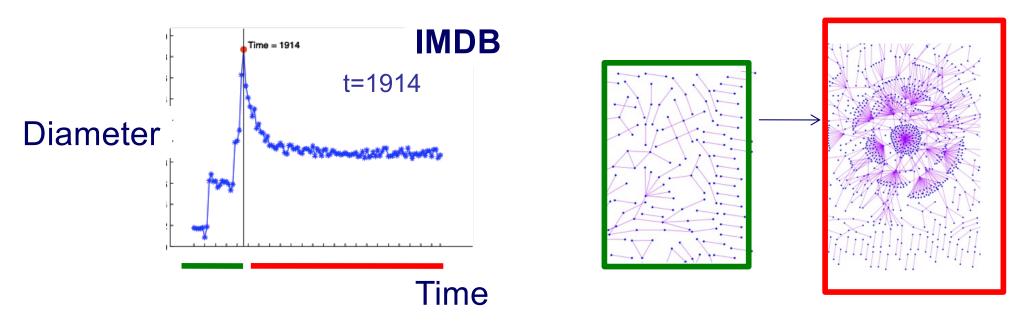
D.3 Gelling Point

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.



D.3 Gelling Point

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.



15-826

Copyright: C. Faloutsos (2025)

List of Dynamic Patterns

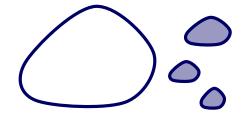
- D.1 diameter
- ✓ D.2 densification
- ✓ D.3 gelling point
 - D.4 NLCC over time
 - D.5 Eigenvalue over time
 - D.6 Popularity over time
 - D.7 phonecall duration

In textbook

Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)

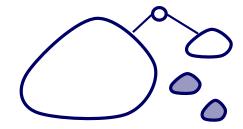
- −Do they continue to grow in size?
- or do they shrink?
- or stabilize?



Q: How do NLCC's emerge and join with the GCC?

(``NLCC' ' = non-largest conn. components)

- −Do they continue to grow in size?
- or do they <u>shrink</u>?
- or stabilize?



Q: How do NLCC's emerge and join with the GCC?

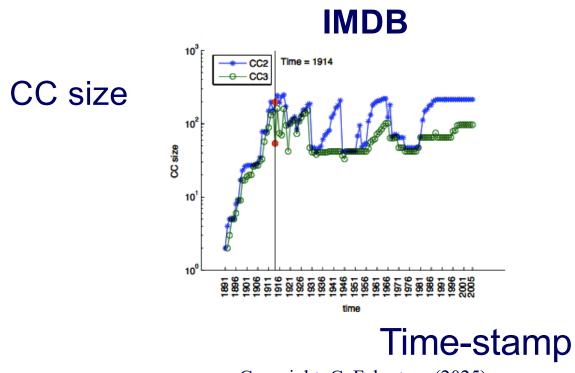
```
(``NLCC' ' = non-largest conn. components)
```

YES – Do they continue to grow in size?

YES – or do they shrink?

YES – or stabilize?

• After the gelling point, the GCC takes off, but NLCC's remain ~constant (actually, **oscillate**).



15-826

Copyright: C. Faloutsos (2025)

List of Dynamic Patterns

✓ • D.4 NLCC over time

• D.5 Eigenvalue over time

- D.6 Popularity over time
- D.7 phonecall duration

In textbook

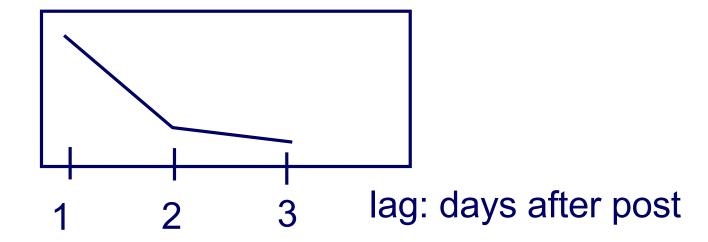
Timing for Blogs

Cascading Behavior in Large Blog Graphs: Patterns and a model

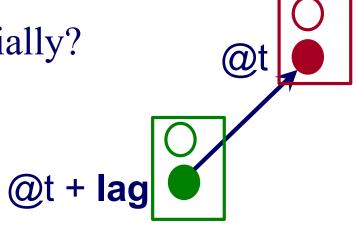
Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst SDM'07

D.6: popularity over time

in links

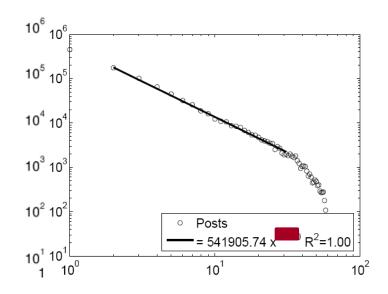


Post popularity drops-off – exponentially?



D.6: popularity over time

in links (log)



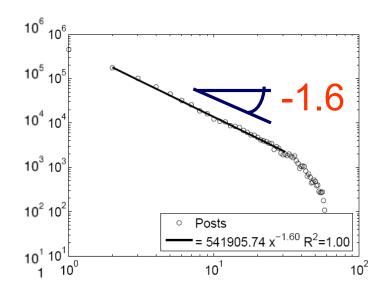
days after post (log)

Post popularity drops-off – exported ally? POWER LAW!

Exponent?

D.6: popularity over time

in links (log)

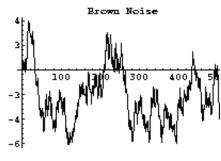


days after post (log)

Post popularity drops-off – expore tally? POWER LAW!

Exponent? -1.6

- close to -1.5: Barabasi's stack model
- and like the zero-crossings of a random walk



DFT of Brown Noise

15-826

Copyright: C. Faloutsos (2025)

126

-1.5 slope

J. G. Oliveira & A.-L. Barabási Human Dynamics: The Correspondence Patterns of Darwin and Einstein. *Nature* **437**, 1251 (2005) . [PDF]

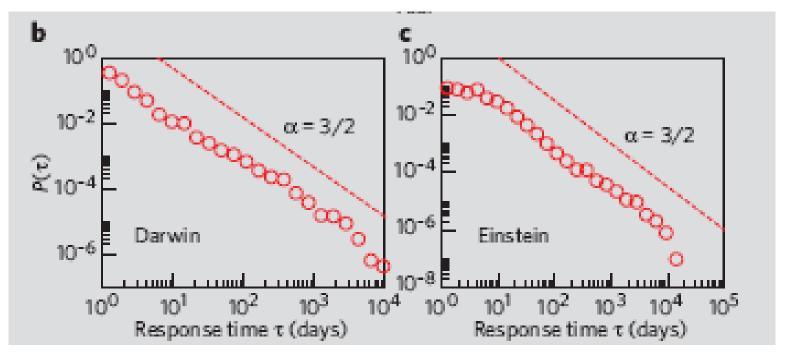


Figure 1 | The correspondence patterns of Darwin and Einstein.

List of Dynamic Patterns

- D.1 diameter
- ✓ D.2 densification
- ✓ D.3 gelling point
- ✓ D.4 NLCC over time
 - D.5 Eigenvalue over time
- D.6 Popularity over time
 - D.7 phonecall duration

In textbook

D.7: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

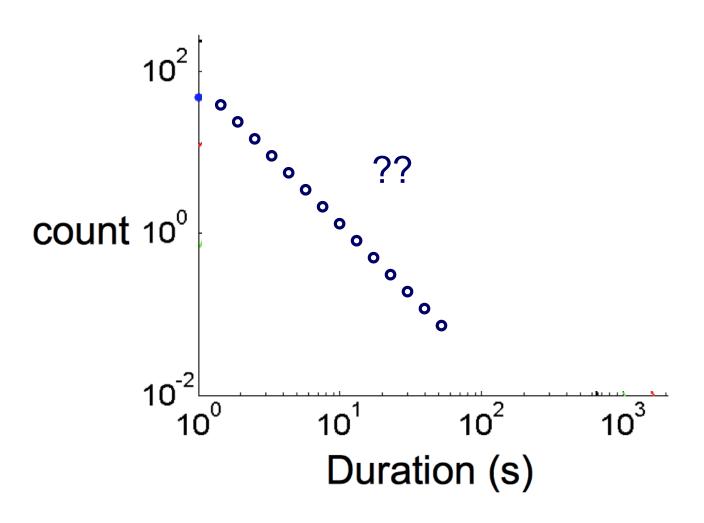
Pedro O. S. Vaz de Melo, Leman

Akoglu, Christos Faloutsos, Antonio

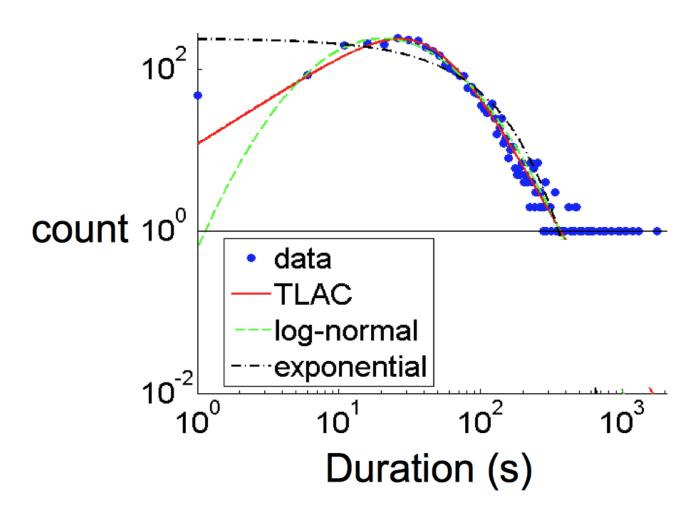
A. F. Loureiro

PKDD 2010

Probably, power law (?)

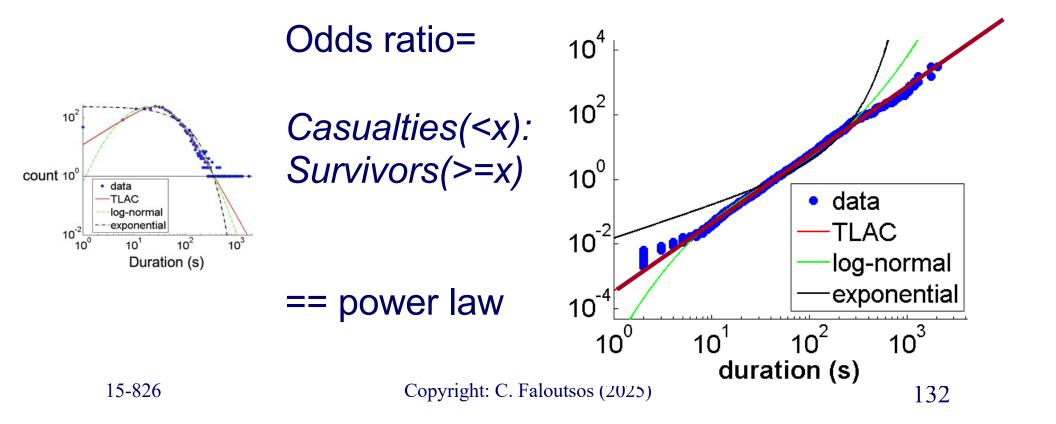


No Power Law!

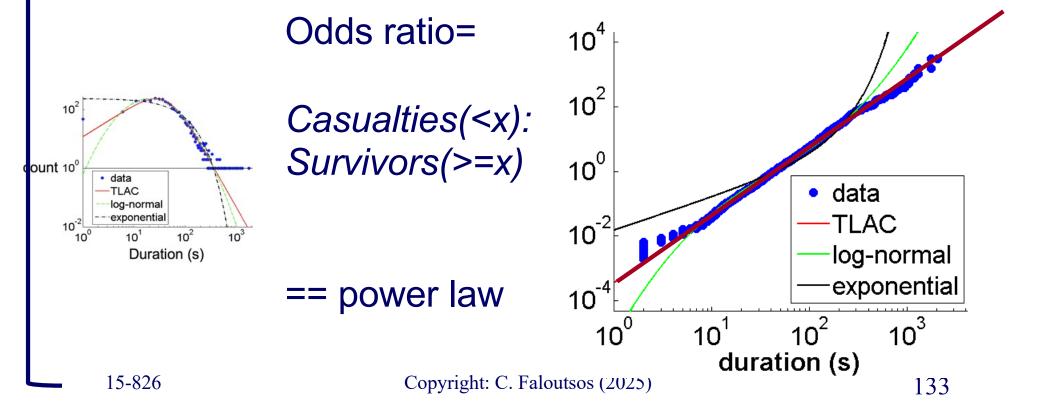


'TLaC: Lazy Contractor'

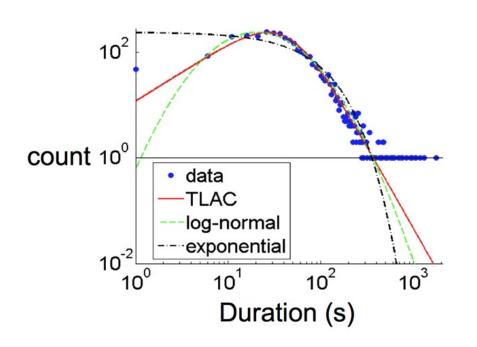
- The longer a task (phonecall) has taken,
- The even longer it will take

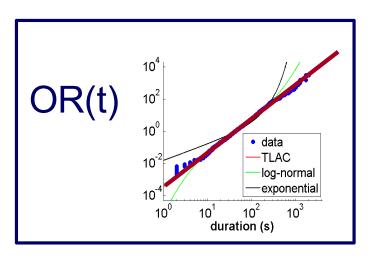


- CDF(t)/(1-CDF(t)) == OR(t)
- For log-logistic: $log[OR(t)] = \beta + \rho * log(t)$



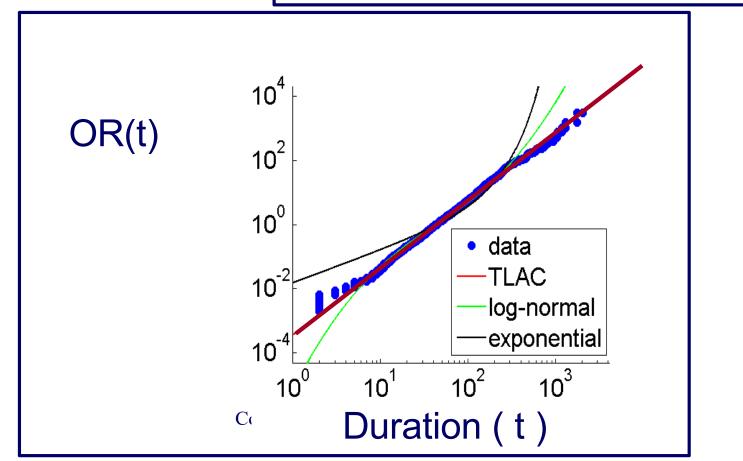
- CDF(t)/(1-CDF(t)) == OR(t)
- For log-logistic: $log[OR(t)] = \beta + \rho * log(t)$





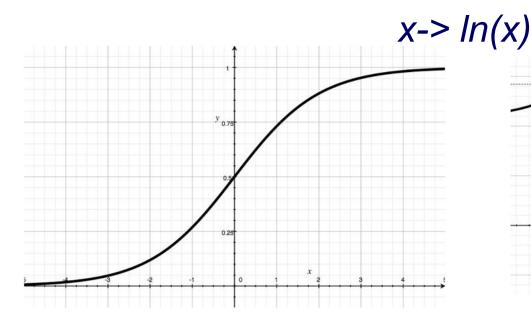
- PDF looks like hyperbola;
- and, if clipped, like power-law

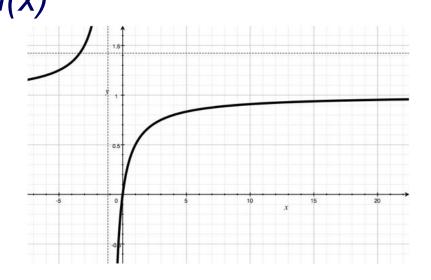
- CDF(t)/(1-CDF(t)) == OR(t)
- For log-logistic: $log[OR(t)] = \beta + \rho*log(t)$



15-826

- Logistic distribution:
 LOG-Logistic CDF -> sigmoid
 - distribution:

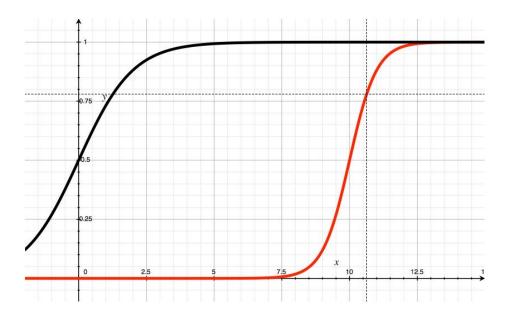




$$CDF(x) = 1/(1+exp(-x))$$

$$CDF(x) = 1/(1+1/x)$$

- Logistic distribution:
 LOG-Logistic CDF -> sigmoid
 - distribution:



$$CDF(x) = 1/(1+exp(-(x-m)/s)) CDF(x) = 1/(1+exp(-(ln(x)-m)/s))$$

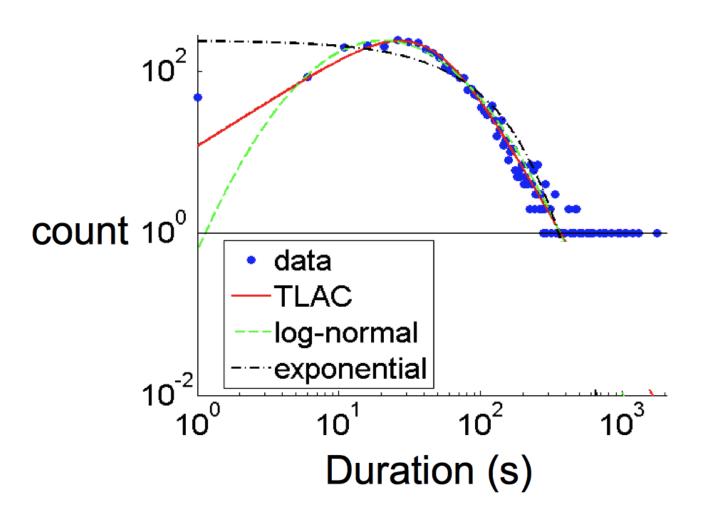
Nice 1 page description: section II of

Pravallika Devineni, Danai Koutra, Michalis Faloutsos, and Christos Faloutsos.

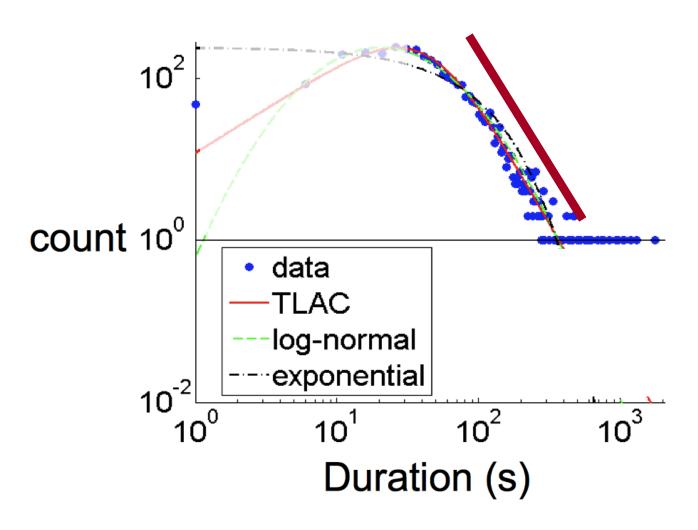
If walls could talk: Patterns and anomalies in Facebook wallposts.

ASONAM 2015, pp 367-374.

Log-logistic: ~ power law



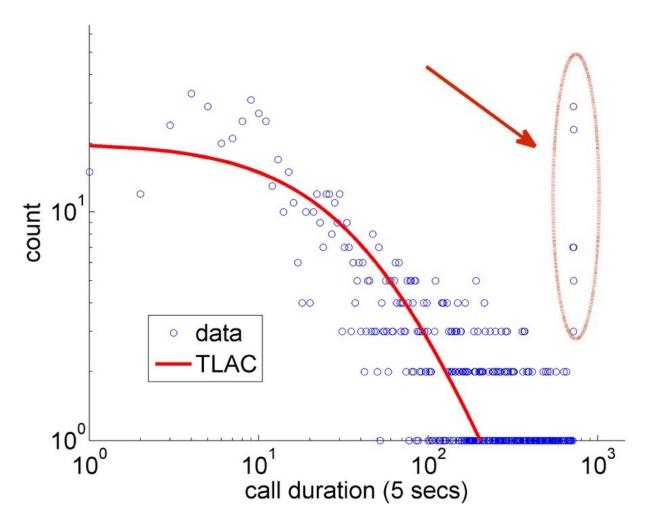
Log-logistic: ~ power law



Data Description

- Data from a private mobile operator of a large city
 - 4 months of data
 - 3.1 million users
 - more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC distribution ('talkative': >30 calls)

Outliers:



15-826

Copyright: C. Faloutsos (2025)

Conclusions

- Are real graphs random?
- NO!
 - Static patterns
 - Small diameters
 - Skewed degree distribution
 - Shrinking diameters
 - Weighted
 - Time-evolving

Conclusions

- Are real graphs random?
- Many power laws log-logistic

 Take logarithms