
CMU SCS

15-826: Multimedia (Databases) 
and Data Mining

Lecture#2: Primary key indexing – B-trees
Christos Faloutsos - CMU 
www.cs.cmu.edu/~christos



CMU SCS

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

15-826 Copyright: C. Faloutsos (2025) 2



Problem

Given a large collection of (multimedia) 
records, find similar/interesting things, ie:

• Allow fast, approximate queries, and
• Find rules/patterns

15-826 Copyright: C. Faloutsos (2025) 3



Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining

15-826 Copyright: C. Faloutsos (2025) 4



Indexing - Detailed outline

• primary key indexing
– B-trees and variants
– (static) hashing
– extendible hashing

• secondary key indexing
• spatial access methods
• text
• ...
15-826 Copyright: C. Faloutsos (2025) 5



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 6

In even more detail:

• B – trees

• B+ - trees, B*-trees

• hashing



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 7

Primary key indexing

• find employee with ssn=123



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 8

B-trees

• the most successful family of index 
schemes (B-trees, B+-trees, B*-trees)

• Can be used for primary/secondary, 
clustering/non-clustering index.

• balanced “n-way” search trees



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 9

Citation
• Rudolf Bayer and Edward M. 

McCreight, Organization and 
Maintenance of Large Ordered 
Indices, Acta Informatica, 
1:173-189, 1972.

• Received the 2001 SIGMOD innovations award
• among the most cited db publications

•www.informatik.uni-trier.de/~ley/db/about/top.html



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 10

B-trees

Eg., B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 11

B - tree properties:

• each node, in a B-tree of order d:
– Key order
– at most n=2d keys
– at least d keys (except root – it may have just 1 key)
– all leaves at the same level
– if number of pointers is k, then node has exactly k-1 

keys
– (leaves are empty)

v1 v2 … vn

p1 pn+1



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 12

Properties

• “block aware” nodes: each node -> disk 
page

• O(log (N)) for everything! (ins/del/search)

• typically, if n = 50 - 100, then 2 - 3 levels

• utilization >= 50%, guaranteed; on average 
69%



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 13

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 14

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 15

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 16

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 17

Queries

• Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk 
accesses)



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 18

Queries

• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg., 

salary ~ 8 )



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 19

Queries
• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg., 

salary ~ 8 )

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 20

Queries
• what about range queries? (eg., 5<salary<8)
• Proximity/ nearest neighbor searches? (eg., 

salary ~ 8 )

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 21

B-trees: Insertion

• Insert in leaf; on overflow, push middle up 
(recursively)

• split: preserves B - tree properties



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 22

B-trees

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 23

B-trees

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

8



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 24

B-trees

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 25

B-trees

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

133

push middle up



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 26

B-trees

Hardest case: Tree T0; insert ‘2’

6

7

9

131 3

22Ovf; push middle



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 27

B-trees

Hardest case: Tree T0; insert ‘2’

7

9

131 3

2

6
Final state



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 28

B-trees: Insertion

• Insert in leaf; on overflow, push middle up 
(recursively – ‘propagate split’)

• split: preserves all B - tree properties (!!)
• notice how it grows: height increases when 

root overflows & splits
• Automatic, incremental re-organization



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 29

Overview

• B – trees

• B+ - trees, B*-trees

• hashing



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 30

B+ trees - Motivation
if we want to store the whole record with the 

key –> problems (what?)

1 3

6

7

9

13

<6

>6 <9 >9



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 31

Solution: B+ - trees 

• They string all leaf nodes together 

• AND

• replicate keys from non-leaf nodes, to make 
sure every key appears at the leaf level



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 32

B+ trees

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 33

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert 
‘8’



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 34

Overview

• B – trees

• B+ - trees, B*-trees

• hashing



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 35

B*-trees

• splits drop util. to 50%, and maybe increase 
height

• How to avoid them?



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 36

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 37

B*-trees: deferred split!
• Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 38

B*-trees: deferred split!
• Notice: shorter, more packed, faster tree
• It’s a rare case, where space utilization and 

speed improve together
• BUT: What if the sibling has no room for 

our ‘lending’?



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 39

B*-trees: deferred split!
• BUT: What if the sibling has no room for 

our ‘lending’?
• A: 2-to-3 split: get the keys from the 

sibling, pool them with ours (and a key 
from the parent), and split in 3.

• Details: too messy (and even worse for 
deletion)



CMU SCS

15-826 Copyright: C. Faloutsos (2025) 40

Conclusions
• Main ideas: recursive; block-aware; on 

overflow -> split; defer splits

• All B-tree variants have excellent, O(logN) 
worst-case performance for ins/del/search

• B+ tree is the prevailing indexing method

• More details: [Knuth vol 3.] or [Ramakrishnan & 
Gehrke, 3rd ed, ch. 10]


