15-826: Multimedia Databases and Data Mining

Lecture \#20:
Independent Component Analysis (ICA)
Christos Faloutsos

1

CarnegieMellon

Problem: BSS

- two sound sources in a cocktail party - separate them

="blind source separation"
(= unknown sources, unknown mixing)

Problem

Q: how to extract sparse hidden/latent variables?

3

Carnegie Mellon

Answer

Q: how to extract sparse hidden/latent variables?
A: SVD ICA

$\mathrm{d}_{1}{ }_{\mathrm{w}}$

4

Must-read Material

- AutoSplit: Fast and Scalable Discovery of Hidden Variables in Stream and Multimedia Databases, Jia-Yu Pan, Hiroyuki Kitagawa, Christos Faloutsos and Masafumi Hamamoto, PAKDD 2004, Sydney, Australia

5

CarnegieMellon

Outline

- Motivation
- Formulation
- PCA and ICA
- Example applications
- Conclusion

Motivation:
 (Q1) Find patterns in data

- Motion capture data: broad jumps

7

CarnegieMellon

Motivation:

(Q1) Find patterns in data

- Human would say
- Pattern 1: along diagonal
- Pattern 2: along vertical axis
- How to find these automatically?

Each point is the measurement at a time tick (total 550 points).

Motivation:
 (Q2) Find hidden variables

Hidden variables (= 'topics' =
Stock prices

(Q3): Topic discovery on text streams

- Data: CNN headline news (Jan.-Jun. 1998)
- Documents of 10 topics in one single text stream
- FIND: the document boundaries
- AND: the terms of each topic

Outline

- Motivation
\rightarrow - Formulation
- PCA and ICA
- Example applications
- Conclusion

Formulation: Finding patterns

Given n data points, each with m attributes.

Find patterns that describe data properties the best.

Formulation: Finding patterns

Given n data points, each with m attributes.

SVD/PCA: ORTHOGONAI vectors

Linear representation

- Find vectors that describe the data set the best.
- Each point: linear combination of the vectors (patterns):

$$
\stackrel{\rightharpoonup}{\mathbf{x}}_{\mathbf{i}}=h_{i, 1} \stackrel{\rightharpoonup}{\mathbf{b}}_{\mathbf{1}}+h_{i, 2} \stackrel{\rightharpoonup}{\mathbf{b}}_{2}
$$

CarnegieMellon

Patterns as data "vocabulary"

 Good pattern ₹ sparse coding
$d_{1} \quad b_{1}$ alone, can describe x_{i}.
(a) ICA representation of $\overrightarrow{\mathbf{x}}_{i}$

$$
\overrightarrow{\mathbf{x}}_{i}=h_{i, 1} \overrightarrow{\mathbf{b}}_{1}+h_{i, 2} \overrightarrow{\mathbf{b}}_{2}
$$

PCA: first step of ICA

PCA finds the hyperplane. ICA finds the correct patterns.

Software

- Open source software: 'fastICA' http://research.ics.aalto.fi/ica/fastica/
- Or 'autosplit':
www.cs.cmu.edu/~jypan/software/autosplit_cmu.tar.gz

References

- Aapo Hyvärinen, Juha Karhunen, Erkki Oja: Independent Component Analysis, John Wiley \& Sons, 2001

Outline

- Motivation
- Formulation
- PCA and ICA
- Example applications
\Rightarrow - Hidden variables in stock prices
- Find topics in documents
- Conclusion

Motivation:
 Find hidden variables

CarnegieMellon

ICA: Like SVD, but sparse U

Participation weight of row i to behavior j

Motivation:
 Find hidden variables

$\begin{array}{llllllllllllll}1990 & 1991 & 1998 & 1998 & 1994 & 1995 & 1996 & 1997 & 1998 & 1998 & 2000 & 2001 & 2002\end{array}$
Caterpillar

"Hidden variable 2"
"Hidden variable 1"
Copyright (c) 2019 C. Faloutsos

Motivation:

Find hidden variables

"General trend"

CarnegieMellon

Motivation:
 Find hidden variables

25

Carnegie Mellon
ICA: Like SVD, but sparse

Stock\#1 Stock\#2

Carnegie Mellon
ICA: Like SVD, but sparse

27

Carnegie Mellon
ICA: Like SVD, but sparse

CarnegieMellon
ICA: Like SVD, but sparse

15-826

What else can ICA tell us?

Carnegie Mellon
Companies related to hidden variable 1

B1,j			
Highest		Lowest	
Caterpillar	0.938512	AT\&T	0.021885
Boeing	0.911120	WalMart	0.624570
MMM	0.906542	Intel	0.638010
Coca Cola	0.903858	Home Depot	0.647774
Du Pont	0.900317	Hewlett-Packard	0.658768

All companies are affected by the "general trend" variable (with weights $0.6 \sim 0.9$), except AT\&T.

Carnegie Mellon

Companies related to hidden variable 2

$\mathrm{B} 2, \mathrm{j}$			
Highest		Lowest	
Intel	0.641102	Philip Morris	-0.194843
Hewlett-Packard	0.621159	International Paper	-0.089569
GE	0.509164	Caterpillar	0.031678
American Express	0.504871	Procter and Gamble	0.109576
Disney	0.490529	Du Pont	0.133337

Tech company

2000-2001"Internet bubble"

Companies related to hidden variable 2

$\mathrm{B} 2, \mathrm{j}$			
Highest		Lowest	
Intel	0.641102	Philip Morris	-0.194843
Hewlett-Packard	0.621159	International Paper	-0.089569
GE	0.509164	Caterpillar	0.031678
Americantexpress	0.504871	Procter and Gamble	0.109576
Disney	0.490529	Du Pont	0.133337

Tech company

Companies affected by the "internet bubble" variable (with weights $0.5 \sim 0.6$) are tech-related.
Other companies are un-related (weights < 0.15).

Outline

- Motivation
- Formulation
- PCA and ICA
- Example applications
- Hidden variables in stock prices
- Find topics in documents
- Conclusion

Topic discovery on text streams

- Data: CNN headline news (Jan.-Jun. 1998)
- Documents of 10 topics in one single text stream
- Documents are sorted by date/time
- Subsequent documents may have different topics

Carnegie Mellon

Topic discovery on text streams

- Data: CNN headline news (Jan.-Jun. 1998)
- Documents of 10 topics in one single text stream
- FIND: the document boundaries
- AND: the terms of each topic

37

Carnegie Mellon

Topic discovery on text streams

- Known: number of topics $=10$
- Unknown: (1) topic of each document (2) topic description

Carnegie Mellon

How to proceed?

39

CarnegieMellon

How to proceed?

- A: Sliding windows

Carnegie Mellon

Topic discovery in documents

Step 1

New stories

$x_{i}=\xrightarrow{[1,5, \ldots, 0]}$
m=3887 (dictionary size)

Step 3: Interpret the patterns

Topics found	ID	Sorted word list				
	A	Mckinne	Sergeant	sexual	Major	Armi
	B	bomb	Rudolph	Clinic	Atlanta	Birmingham
	C	Winfrei	Beef	Texa	Oprah	Cattl
15-826	D	Viagra	Drug	Impot	Pill	Doctor
	E	Zamora	Graham	Kill	Former	Jone
	F	Medal	Olymp	Gold	Women	Game
	G	Pope	Cube	Castro	Cuban	Visit
	H	Asia	Economi	Japan	Econom	Asian
	I	Super	Bowl	Game	Team	Re
	J	Peopl	Tornado	Florida	Re	bomb

Carnegie Mellon

Step 3: Evaluate the patterns

ID	True Topic					
1	Sgt. Gene Mckinney is on trial for alleged sexual misconduct					
2	A bomb explodes in a Birmingham, AL abortion clinic					
3	The Cattle Industry in Texas sues Oprah Winfrey for defaming beef					
4	New impotency drug Viagra is approved for use					
5	Diane Zamora is convicted of helping to murder her lover's girlfriend					
ID						
A	mckinne	sergeant	sexual	major	armi	
B	bomb	rudolph	clinic	atlanta	birmingham	
C	winfrei	beef	texa	oprah	cattl	
D	viagra	drug	Impot	pill	doctor	
E	zamora	graham	kill	former	jone	

AutoSplit finds correct topics.

Step 3: Evaluate the patterns

ID	AutoSplit				
A	mckinne	sergeant	sexual	major	armi
B	bomb	rudolph	clinic	atlanta	birmingham
C	winfrei	beef	texa	oprah	cattl
D	viagra	drug	Impot	pill	doctor
E	zamora	graham	kill	former	jone

ID	PCA				
A^{\prime}	mckinne	bomb	women	sexual	sergeant
B^{\prime}	bomb	mckinne	rudolph	clinic	atlanta
C^{\prime}	winfrei	viagra	texa	beef	oprah
D^{\prime}	viagra	winfrei	drug	texa	beef
E^{\prime}	zamora	viagra	winfrei	graham	olymp

AutoSplit's topics are better than PCA.
$15-826$
copyrignt (c) zuıy c. raıoutsos \#44

Carnegie Mellon

Step 3: Evaluate the patterns

Topic 1

PCA vectors mix the topics.
${ }_{15-826}$ AutoSplit's topics are better than PCA. \#45

45

Carnegie Mellon

Conclusion

- ICA: more flexible than PCA in finding patterns.
- Many applications
- Find hidden variables in time series (e.g., stock prices)
- Blind source separation
- Rule of thumb: plot after PCA;
- if 'chicken-feet', try ICA

Answer

Q: how to extract sparse hidden/latent variables?
A: SVD ICA

$\stackrel{{ }_{2}}{\mathrm{~d}_{1}}$

47

Citation

- AutoSplit: Fast and Scalable Discovery of Hidden Variables in Stream and Multimedia Databases, Jia-Yu Pan, Hiroyuki Kitagawa, Christos Faloutsos and Masafumi Hamamoto
PAKDD 2004, Sydney, Australia

CarnegieMellon

References

- Jia-Yu Pan, Andre Guilherme Ribeiro Balan, Eric P. Xing, Agma Juci Machado Traina, and Christos Faloutsos. Automatic Mining of Fruit Fly Embryo Images. KDD, 2006.
- Arnab Bhattacharya, Vebjorn Ljosa, Jia-Yu Pan, Mark R. Verardo, Hyungjeong Yang, Christos Faloutsos, and Ambuj K. Singh. ViVo: Visual Vocabulary Construction for Mining Biomedical Images. ICDM, 2005.
- Jia-Yu Pan, Hiroyuki Kitagawa, Christos Faloutsos, and Masafumi Hamamoto. AutoSplit: Fast and Scalable Discovery of Hidden Variables in Stream and Multimedia Databases. PAKDD, 2004.

CarnegieMellon

References

- Aapo Hyvärinen, Juha Karhunen, Erkki

Oja: Independent Component Analysis, John Wiley \& Sons, 2001

Software

- Open source software: 'fastICA' http://research.ics.aalto.fi/ica/fastica/
- Or 'autosplit':
www.cs.cmu.edu/~jypan/software/autosplit_cmu.tar.gz

