\qquad $工$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad Textbook Appendix B.

- Wavelets: In PTVF ch. 13.10; in \qquad
\qquad
\qquad
\qquad

3^{3}	
Outline	
Goal: 'Find similar / interesting things' - Intro to DB	
- Indexing - similarity search	
- Data Mining	
	3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
DSP - Detailed outline
- DFT
- DFT

- what
- why
- how
hmetic examples
- properties / observations
- DCT
- 2-d DFT
- Fast Fourier Transform (FFT)
15-826
Copyright: C. Faloutsos (2013)
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Why should we care?		
A: several real sequences are periodic		
Q: Such as?		
A:		
- sales patterns follow seasons;		
- economy follows 50-year cycle		
- temperature follows daily and yearly cycles		
Many real signals follow (multiple) cycles		
${ }_{15826}$,

Why should we care?

For example: human voice!

- Frequency analyzer
http://www.relisoft.com/freeware/freq.html
\qquad
\qquad
\qquad
- speaker identification
- impulses/noise -> flat spectrum \qquad
- high pitch -> high frequency

15-826
Copyright: C. Faloutsos (2013)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{|lr|}
\hline X_{f}=1 / \sqrt{n} \sum_{t=0}^{n-1} x_{t} * \exp (-j 2 \pi f t / n) & f=0, \ldots, n-1 \\
(j=\sqrt{-1}) & \text { inverse DFT } \\
x_{t}=1 / \sqrt{n} \sum_{f=0}^{n-1} X_{f} * \exp (+j 2 \pi f t / n) &
\end{array}
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
)
15-826

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
How does it work?

- Basis functions are actually n-dim vectors,
orthogonal to each other
- 'similarity' of \mathbf{x} with each of them: inner
product
- DFT: \sim all the similarities of \mathbf{x} with the
basis functions
${ }^{155826}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

DFT: definition

- Good news: Available in all symbolic math
\qquad packages, eg., in 'mathematica'
$\mathrm{x}=[1,2,1,2]$;
$\mathrm{X}=$ Fourier $[\mathrm{x}]$;
Plot[Abs[X]];

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{F}^{\text {cmuscs }}$		
DFT: definition		
Observations:		
- X_{f} : are complex numbers except $-\mathrm{X}_{0}$, who is real		
- $\operatorname{Im}\left(X_{f}\right): \sim$ amplitude of sine wave of frequency f		
- $\operatorname{Re}\left(\mathrm{X}_{\mathrm{f}}\right): \sim$ amplitude of cosine wave of frequency f - \mathbf{x} : is the sum of the above sine/cosine waves		
${ }_{15.826}$	Copyright C. Faloutos (2013)	24

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

DFT: Amplitude spectrum

\qquad

- excellent approximation, with only 2 frequencies!
- so what?
- A1: compression
- A2: pattern discovery
\qquad
\qquad
\qquad
\qquad
- (A3: forecasting) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3{ }^{3} \mathrm{cmuscs}$
 DFT: Amplitude spectrum

- excellent approximation, with only 2 frequencies!
- so what?
- A1: (lossy) compression
- A2: pattern discovery

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

${ }^{33^{\text {cnuscs }}}$ Properties

\qquad

- Time shift sounds the same
- Changes only phase, not amplitudes
- Sawtooth has almost all frequencies \qquad
- With decreasing amplitude
- Spike has all frequencies \qquad
\qquad

15-826
Copyright: C. Faloutsos (2013)
DFT: Parseval's theorem

$$
\operatorname{sum}\left(\mathrm{X}_{\mathrm{t}}^{2}\right)=\operatorname{sum}\left(\left|\mathrm{X}_{\mathrm{f}}\right|^{2}\right)
$$ or, alternatively: it does an axis rotation:

x 1

- $\mathbf{x}=\{\mathrm{x} 0, \mathrm{x} 1\}$
15-826
x0
Copyright: C. Faloutsos (2013)
54
\qquad
\qquad
\qquad
\qquad

DFT: Parseval's theorem

sum(}\mp@subsup{\textrm{x}}{\textrm{t}}{}\mp@subsup{}{}{2})=\operatorname{sum}(|\mp@subsup{\textrm{X}}{\textrm{f}}{}\mp@subsup{|}{}{2}
sum(}\mp@subsup{\textrm{x}}{\textrm{t}}{}\mp@subsup{}{}{2})=\operatorname{sum}(|\mp@subsup{\textrm{X}}{\textrm{f}}{}\mp@subsup{|}{}{2}
Ie., DFT preserves the 'energy'
or, alternatively: it does an axis rotation:

Copyright: C. Faloutsos (2013)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- $X_{0}=$?
- A: $X_{0}=1 / \operatorname{sqrt}(4) * 1^{*} \exp (-\mathrm{j} 2 \pi 0 / \mathrm{n})=1 / 2$
- $X_{1}=$?
- $X_{2}=$?
- $X_{3}=$?

$3^{\text {anves }}$ details
 Arithmetic examples

- Impulse function: $\mathbf{x}=\{0,1,0,0\}(n=4)$
- $X_{0}=$?
- A: $X_{0}=1 / \operatorname{sqrt}(4) * 1 * \exp (-\mathrm{j} 2 \pi 0 / \mathrm{n})=1 / 2$
- $X_{l}=-1 / 2 \mathrm{j}$
- $X_{2}=-1 / 2$
- $X_{3}=+1 / 2 \mathrm{j}$
- Q: does the 'symmetry' property hold?

	details
	Arithmetic examples

\qquad
\qquad
\qquad

- $X_{0}=$?
- $\mathrm{A}: X_{0}=1 / \mathrm{sqrt}(4) * 1 * \exp (-\mathrm{j} 2 \pi 0 / \mathrm{n})=1 / 2$
- $X_{1}=-1 / 2 \mathrm{j}$
- $X_{2}=-1 / 2$
- $X_{3}=+1 / 2 \mathrm{j}$
- Q: does the 'symmetry' property hold?
- A: Yes (of course)

济 ${ }^{\text {cinses }}$ details

Arithmetic examples

- Impulse function: $\mathbf{x}=\{0,1,0,0\}(n=4)$
- $X_{0}=$?
- A: $X_{0}=1 / \mathrm{sqrt}(4) * 1 * \exp (-\mathrm{j} 2 \pi 0 / \mathrm{n})=1 / 2$
- $X_{I}=-1 / 2 \mathrm{j}$
- $X_{2}=-1 / 2$
- $X_{3}=+1 / 2 \mathrm{j}$
- Q : check Parseval's theorem
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

3 ${ }^{\text {cmsse }}$ details
 Arithmetic examples

- Impulse function: $\mathbf{x}=\{0,1,0,0\}(n=4)$
- $X_{0}=$?
- A: $X_{0}=1 / \operatorname{sqrt}(4) * 1 * \exp (-\mathrm{j} 2 \pi 0 / \mathrm{n})=1 / 2$
- $X_{l}=-1 / 2 \mathrm{j}$
- $X_{2}=-1 / 2$
- $X_{3}=+1 / 2 \mathrm{j}$
- Q : (Amplitude) spectrum?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

${ }^{\text {楽 }}$ Arithmetic examples

\qquad

- Q: What does this mean?
- A: All frequencies are equally important -> \qquad - we need n numbers in the frequency domain to represent just one non-zero number in the time \qquad domain!
- "frequency leak"

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Observations

- Q: DFT of a sinusoid, eg.

$$
x_{t}=3 \sin (2 \pi / 4 \mathrm{t})
$$

$(\mathrm{t}=0, \ldots, 3)$

- $\mathrm{Q}: \mathrm{X}_{0}=$?
- $\mathrm{Q}: \mathrm{X}_{1}=$?
- $\mathrm{Q}: \mathrm{X}_{2}=$?
- $\mathrm{Q}: \mathrm{X}_{3}=$?

15-826
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {Onservations }}$

- Q: DFT of a sinusoid, eg.

$$
x_{t}=3 \sin (2 \pi / 4 \mathrm{t})
$$

$(\mathrm{t}=0, \ldots, 3)$

- $\mathrm{Q}: \mathrm{X}_{0}=0$
- $Q: X_{1}=-3 j$
-check 'symmetry'
- $\mathrm{Q}: \mathrm{X}_{2}=0$ -check Parseval
- $\mathrm{Q}: \mathrm{X}_{3}=3 \mathrm{j}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Property

- Shifting \mathbf{x} in time does NOT change the amplitude spectrum
- eg., $\mathbf{x}=\left\{\begin{array}{lll}0 & 0 & 0\end{array}\right\}$ and $\mathbf{x}^{\prime}=\left\{\begin{array}{lll}0 & 100\end{array}\right\}$: same (flat) amplitude spectrum
- (only the phase spectrum changes)
- Useful property when we search for patterns that may 'slide'

15-826

Summary of properties
- Spike in time: -> all frequencies
- Step/Trend: -> ringing (\sim all frequencies)
- Single/dominant sinusoid: -> spike in spectrum
- Time shift $->$ same amplitude spectrum

15-826
Copyright: C. Faloutsos (2013)
83
\qquad

DSP - Detailed outline

- DFT
- what
- why
- how
- Arithmetic examples
- properties / observations
- DCT
- 2-d DFT
- Fast Fourier Transform (FFT)
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- brilliant solution to both problems: mirror the sequence, do DFT, and drop the redundant entries!

t
15-826
Copyright: C. Faloutsos (2013)
${ }^{86}$

- (see Numerical Recipes for exact formulas)

3^{cmuscs}
 DCT - properties

- it gives real numbers as the result
- it has no problems with trends
- it is very good when x_{t} and $x_{(t+1)}$ are correlated
(thus, is used in JPEG, for image compression)

15-826
Copyright: C. Faloutsos (2013)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

2-d DFT

- Quiz: how do the basis functions look like?
- for $\mathrm{f} 1=\mathrm{f} 2=0$
- for $\mathrm{f} 1=1, \mathrm{f} 2=0$
- for $\mathrm{f} 1=1, \mathrm{f} 2=1$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- Quiz: how do the basis functions look like?
- for $\mathrm{f} 1=\mathrm{f} 2=0$ flat
- for $\mathrm{fl}=1, \mathrm{f} 2=0 \quad$ wave on x ; flat on y

- for $\mathrm{f} 1=1, \mathrm{f} 2=1 \sim$ egg-carton

Copyright: C. Faloutsos (2013) 94

$\underbrace{\text { DSP }}$ - Detailed outline

- DFT
- what
- why
- how
- Arithmetic examples
- properties / observations
- DCT
- 2-d DFT
- Fast Fourier Transform (FFT)

15-826
Copyright: C. Faloutsos (2013)
95

- What is the complexity of DFT?

$$
X_{f}=1 / \sqrt{n} \sum_{t=0}^{n-1} x_{t} * \exp (-j 2 \pi t f / n)
$$

\qquad

FFT

- What is the complexity of DFT?

$$
X_{f}=1 / \sqrt{n} \sum_{t=1}^{n-1} x_{t} * \exp (-j 2 \pi t f / n)
$$

- A: Naively, O(n^{2})
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- However, if n is a power of 2 (or a number with many divisors), we can make it

$\mathrm{O}(n \log n)$

Main idea: if we know the DFT of the odd time-ticks, and of the even time-ticks, we can quickly compute the whole DFT
Details: in Num. Recipes

$3^{\text {curscs }}$
 DFT - Conclusions

- It spots periodicities (with the 'amplitude spectrum')
- can be quickly computed $(\mathrm{O}(n \log n))$, thanks to the FFT algorithm.
- standard tool in signal processing (speech, image etc signals)

15-826

Copyright: C. Faloutsos (2013)

\qquad
Find: patterns, periodicities, and/or compress

count $=\underbrace{}_{15-826} \quad$| lynx caught per year |
| :--- |
| (packets per day; |
| virus infections per month) |

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - DWT

- DFT is great - but, how about compressing a spike?
- A: Terrible - all DFT coefficients needed!

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - construction

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

${ }^{\text {Wavelets - construction }}$

Observation1:
'+' can be some weighted addition
' - ' is the corresponding weighted difference ('Quadrature mirror filters')
Observation2: unlike DFT/DCT, there are *many* wavelet bases: Haar, Daubechies-4, Daubechies-6, Coifman, Morlet, Gabor, ...

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - Drill\#3:

- Q : weekly + daily periodicity, + spike DWT?

5-826
Copyright: C. Faloutsos (2013)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - Drill\#3:

- Q: weekly + daily periodicity, + spike DWT?

- Q: weekly + daily periodicity, + spike DWT?

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - Drill\#3:

- Q: weekly + daily periodicity, + spike DWT?

$15-826$
Copyright: C. Faloutsos (2013) 128

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Wavelets - Drill:

Let's see it live:
http://dsp.rice.edu/software/dsp-teaching-tools
delta; cosine; cosine2; chirp

- Haar vs Daubechies-4, -6, etc \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$工$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
$\mathrm{x}(\mathrm{t})=\cos (2 * \mathrm{pi} * \mathrm{t} * \mathrm{t} / 1024)$

15-826
Copyright: C. Faloutsos (2013) 137
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{x}(\mathrm{t})=\cos (2 * \mathrm{pi} * \mathrm{t} * \mathrm{t} / 1024)
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BGP-lens: Patterns and Anomalies in Internet Routing Updates B. Aditya Prakash et al, SIGKDD 2009

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

3^{3}
 Wavelets - k-dimensions?

- easily defined for any dimensionality (like \qquad DFT, DCT)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Edges (horizontal; vertical; diagonal)

15-826
Copyright: C. Faloutsos (2013)
148

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Advantages of Wavelets

- Better compression (better RMSE with same number of coefficients)
- closely related to the processing of the mammalian eye and ear
- Good for progressive transmission

- handle spikes well
- usually, fast to compute $(\mathrm{O}(n)!)$

15-826
Copyright: C. Faloutsos (2013)

Overall Conclusions

- DFT, DCT spot periodicities
- DWT : multi-resolution - matches processing of mammalian ear/eye better
- All three: powerful tools for compression, pattern detection in real signals
- All three: included in math packages (matlab, R, mathematica, ...)

\qquad
\qquad
\qquad
\qquad

Resources (cont'd)

- (defunct?) http://www.dsptutor.freeuk.com/jsanalyser/ FFTSpectrumAnalyser.html : Nice java applets
- http://www.relisoft.com/freeware/ freq.html : voice frequency analyzer (needs microphone - MSwindows only)

15-826

Res $^{\text {cnuscs }}$	
	Resources $\left(\operatorname{cont}^{9} \mathbf{d}\right)$

- www-dsp.rice.edu/software/EDU/mra.shtml (wavelets and other demos)
- R ('install.packages("wavelets"))
\qquad

