
\qquad
\qquad

Outline

Goal: ‘Find similar / interesting things’

- Intro to DB
- Indexing - similarity search \qquad
- Data Mining

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SVD - Other properties summary

\qquad

- can produce orthogonal basis (obvious) (who cares?) \qquad
- can solve over- and under-determined linear problems (see C(1) property)
- can compute 'fixed points' (= 'steady state prob. in Markov chains') (see C(4) property)
\qquad
Properties - sneak preview:

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nx} \mathrm{m]}}=\mathbf{U}_{[\mathrm{n} \times \mathrm{r}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$
$\mathrm{B}(1): \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \times \mathrm{n}]}=$? $?$

Less obvious properties

\qquad
$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]}=\mathbf{U}_{[\mathrm{nxr}]} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}$ $\mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm]}]}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{mxn}]}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}}$ \qquad symmetric; Intuition?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\mathrm{A}(0): \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}=\mathbf{U}_{[\mathrm{n} \times \mathrm{r}]} \boldsymbol{\Lambda}_{[\mathrm{r} \times \mathrm{r}]} \mathbf{V}^{\mathbf{T}}{ }_{[\mathrm{rxm}]}
$$

$$
\mathrm{B}(1): \mathbf{A}_{[\mathrm{nxm}]}\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \mathrm{\times n}]}=\mathbf{U} \boldsymbol{\Lambda}^{2} \mathbf{U}^{\mathrm{T}}
$$

$$
\mathrm{B}(2):\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \times \mathrm{n}]} \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}=\mathbf{V} \boldsymbol{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}
$$

$$
\mathrm{B}(3):\left(\left(\mathbf{A}^{\mathrm{T}}\right)_{[\mathrm{m} \times \mathrm{n}]} \mathbf{A}_{[\mathrm{n} \times \mathrm{m}]}\right)^{\mathrm{k}}=\mathbf{V} \mathbf{\Lambda}^{2 \mathrm{k}} \mathbf{V}^{\mathrm{T}}
$$

$$
\mathrm{B}(4):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \sim \mathrm{v}_{1} \lambda_{1}{ }^{2 k} \mathrm{v}_{1}{ }^{\mathrm{T}}
$$

$$
\mathrm{B}(5):\left(\mathbf{A}^{\mathrm{T}} \mathbf{A}\right)^{\mathrm{k}} \mathbf{v}^{\prime} \sim(\text { constant }) \mathbf{v}_{1}
$$

15-826
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	$3^{\text {3 }}$ cuscs ${ }^{\text {cos }}$	
	Verify formula:	
$\mathbf{A}=\left[\begin{array}{ll}1 & 2\end{array}\right] \quad \mathbf{b}=[4]$		
$\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$		
$\mathbf{U}=$? ?		
$\Lambda=?$?		
$\mathrm{V}=$? ?		
$\mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$		
${ }_{15826}$		${ }^{2}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
$\mathbf{A}=\left[\begin{array}{ll}1 & 2\end{array}\right] \quad \mathbf{b}=[4]$
$\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$
$\mathbf{U}=[1]$
$\Lambda=[\operatorname{sqrt}(5)]$
$\mathbf{V}=\left[\begin{array}{ll}1 / \operatorname{sqrt}(5) & 2 / \operatorname{sqrt}(5)\end{array}\right]^{\mathrm{T}}$
$\mathbf{x}_{\mathbf{0}}=\mathbf{V} \boldsymbol{\Lambda}{ }^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$

15-826
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
$\mathbf{U}=[1]$
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {a }}$	Exercise
Verify formula:	
$\mathbf{A}=\left[\begin{array}{ll}3 & 2\end{array}\right]^{\mathrm{T}} \quad \mathbf{b}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}}$	
$\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$	
$\mathbf{U}=\left[\begin{array}{ll}3 / \mathrm{sqrt}(13) & 2 / \mathrm{sqrt}(13)\end{array}\right]^{\mathrm{T}}$	
$\Lambda=[\operatorname{sqrt}(13)]$	
$\mathbf{V}=[1]$	
$\mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}=[7 / 13]$	
	${ }^{49}$

\qquad
\qquad
$\mathbf{A}=\left[\begin{array}{ll}3 & 2\end{array}\right]^{\mathrm{T}} \quad \mathbf{b}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{T}}$
$\mathbf{A}=\mathbf{U} \boldsymbol{\Lambda} \mathbf{V}^{\mathrm{T}}$
$\mathbf{U}=\left[\begin{array}{ll}3 / \operatorname{sqrt}(13) & 2 / s q r t(13)\end{array}\right]^{\mathrm{T}}$
$\Lambda=[\operatorname{sqrt(13)}]$
$\mathbf{V}=[1]$
$\mathbf{x}_{0}=\mathbf{V} \boldsymbol{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}=[7 / 13]$

15-826
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {Lenscs }}$ Least obvious properties cont'd

\qquad
$\mathrm{A}(0): \mathbf{A}_{[\mathrm{nxm}]}=\mathbf{U}_{[\mathrm{nxr]}} \boldsymbol{\Lambda}_{[\mathrm{rxr}]} \mathbf{V}_{[\mathrm{rxm}]}^{\mathbf{T}}$
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nxm}]} \mathbf{v}_{\mathbf{1}[\mathrm{m} \mathrm{x}]}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}[\mathrm{nx} 1]}$
where $\mathbf{v}_{\mathbf{1}}, \mathbf{u}_{\mathbf{1}}$ the first (column) vectors of \mathbf{V}, \mathbf{U}. ($\mathbf{v}_{\mathbf{1}}$ $==$ right-singular-vector)
C(3): symmetrically: $\mathbf{u}_{1}{ }^{\mathbf{T}} \mathbf{A}=\boldsymbol{\lambda}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
$\mathbf{u}_{1}==$ left-singular-vector
Therefore:
\qquad

15-826 \qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Kleinberg's algorithm
\qquad

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0 : find all pages containing the query terms
Step 1: expand by one move forward and backward

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
In conclusion, we want vectors \mathbf{h} and \mathbf{a} such that:

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

Recall properties:
$\mathrm{C}(2): \mathbf{A}_{[\mathrm{nx} \mathrm{m}]} \mathbf{v}_{\mathbf{1}[\mathrm{m} \mathrm{x} 1]}=\boldsymbol{\lambda}_{1} \mathbf{u}_{1[\mathrm{nx} 1]}$ $\mathrm{C}(3): \mathbf{u}_{\mathbf{1}}{ }^{\mathbf{T}} \mathbf{A}=\lambda_{1} \mathbf{v}_{\mathbf{1}}{ }^{\mathbf{T}}$
15-826
Copyright: C. Faloutsos (2013)
67
\qquad
\qquad

$$
\begin{aligned}
\mathbf{h} & =\mathbf{A} \mathbf{a} \\
\mathbf{a} & =\mathbf{A}^{\mathrm{T}} \mathbf{h}
\end{aligned}
$$

are the left- and right- singular-vectors of the
Starting from random a' and iterating, we'll eventually converge
(Q: to which of all the singular-vectors? why?)
15-826
Copyright: C. Faloutsos (2013)
68
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{Br}^{\mathrm{cmuscs}}$
 Kleinberg's algorithm discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social \qquad networs / 'small world' phenomena

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Problem: PageRank

Given a directed graph, find its most interesting/central node

A node is important, if it is connected with important nodes (recursive, but OK!)
15-826
Copyright: C. Faloutsos (2013) 74
Problem: PageRank - solution
Given a directed graph, find its most
interesting/central node
Proposed solution: Random walk; spot most
'popular' node (-> steady state prob. (ssp))
A node has high ssp,
if it is connected
with high ssp nodes
(recursive, but OK!)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

${ }^{\text {(Simplified) PageRank }}$ algorithm

\qquad
\qquad

- thus, \mathbf{p} is the eigenvector that corresponds to the highest eigenvalue $(=1$, since the matrix is \qquad column-normalized)
- Why does such a \mathbf{p} exist? \qquad
- \mathbf{p} exists if \mathbf{B} is nxn, nonnegative, irreducible [Perron-Frobenius theorem] \qquad

$3{ }^{3}$ cmuscs
 (Simplified) PageRank algorithm

- $\mathbf{B} \mathbf{p}=1$ * \mathbf{p}
- thus, \mathbf{p} is the eigenvector(*) that corresponds to the highest eigenvalue $(=1$, since the matrix is column-normalized)
- Why does such a \mathbf{p} exist?
$-\mathbf{p}$ exists if \mathbf{B} is nxn, nonnegative, irreducible [Perron-Frobenius theorem]

(*) dfn: a few foils later Copyright: C. Faloutos (2013)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
3/ cmuscs
(Simplified) PageRank algorithm
```

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

Full version of algo: with occasional random jumps
Why? To make the matrix irreducible
15-826
Copyright: C. Faloutsos (2013)
${ }^{80}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
3/ cmuscs
    Alternative notation - eigenvector
                viewpoint
    M Modified transition matrix
```



```
        p=M p
```

That is: the steady state probabilities $=$ \qquad
PageRank scores form the first eigenvector of the 'modified transition matrix' \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
If \mathbf{A} is $\mathrm{a}(\mathrm{nx})$ square matrix
(λ, \mathbf{x}) is an eigenvalue/eigenvector pair of \mathbf{A} if

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

CLOSELY related to singular values:
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

```
M
                                    values
    if
```



```
    then \mathbf{A}=(\mp@subsup{\mathbf{B}}{}{\mathbf{T}}\mathbf{B})\mathrm{ is symmetric and}
```



```
    ie, }\mp@subsup{\mathbf{v}}{\mathbf{1}}{\prime},\mp@subsup{\mathbf{v}}{2}{},\ldots\mathrm{ : eigenvectors of A=( (B'B)
    15-826


\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{\({ }^{\text {3. }}\) Parenthesis: intuition behind eigenvectors}
\(\qquad\)
- Definition
- 3 properties
- intuition
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\underbrace{}\)\begin{tabular}{c} 
Closing the parenthesis wrt \\
intuition behind eigenvectors
\end{tabular}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{\(3^{\text {cusscs }}\) \\ Kleinberg/PageRank conclusions}
\(\qquad\)
\(\qquad\)
hub/authority scores: strongest left- and right-singular-vectors of the adjacency matrix \(\qquad\) random walk on a graph: steady state probabilities are given by the strongest \(\qquad\) eigenvector of the transition matrix

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{\(3 \mathrm{M}^{\mathrm{cmuscs}}\) \\ Query feedbacks}
[Chen \& Roussopoulos, sigmod 94]
Sample problem:
estimate selectivities (e.g., 'how many movies were made between 1940 and 1945?' \(\qquad\)
for query optimization,
LEARNING from the query results so far!!

\section*{Query feedbacks}
- Given: past queries and their results
- \#movies \((1925,1935)=52\)
\(-\# \operatorname{movies}(1948,1990)=123\)
- ...
- And a new query, say \#movies \((1979,1980)\) ?
- Give your best estimate \(\qquad\)
\(\qquad\) \#movies 99



For example
\(F(x)=\#\) movies made until year ' \(x\) '
\[
=\mathrm{a}_{1}+\mathrm{a}_{2} * \mathrm{x}+\mathrm{a}_{3} * \mathrm{x}^{2}+\ldots \mathrm{a}_{7} * \mathrm{x}^{6}
\]

15-826
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)


And thus X11 \(=0 ;\) X12 \(=1932\)-1920, etc


15-826
Copyright: C. Faloutsos (2013)


\section*{Query feedbacks}
In matrix form:
\[
\mathbf{X} \mathbf{a}=\mathbf{b}
\]
and the least-squares estimate for \(\mathbf{a}\) is
according to property \(\mathrm{C}(1)\)
(let \(\mathbf{X}=\mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathbf{T}}\) )
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
疗 \({ }^{\text {cmss }}\)\begin{tabular}{c} 
Query feedbacks - \\
enhancements
\end{tabular}

The solution
\[
\mathbf{a}=\mathbf{V} \Lambda^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}
\]
works, but needs expensive SVD each \(\qquad\) time a new query arrives
GREAT Idea \#3: Use 'Recursive Least \(\qquad\)
Squares', to adapt a incrementally.
Details: in paper - intuition:
15-826
Copyright: C. Faloutsos (2013)
113

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{\(3^{\text {cusses }}\) \\ Query feedbacks enhancements}
the new coefficients can be quickly computed from the old ones, plus \(\qquad\) statistics in a (7x7) matrix
(no need to know the details, although the RLS is a brilliant method)

\(\qquad\)

\section*{疗 \({ }^{\text {cumss }}\) Query feedbacks enhancements}
```

Intuition: least squares fit
b

```

```

X

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

- ...
- Case studies \qquad
- SVD properties
- more case studies \qquad
- google/Kleinberg algorithms
- query feedbacks \qquad
\qquad
\qquad

$3{ }^{3} \mathrm{cmuscs}$
 Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts' (LSI)
- ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

\qquad
\qquad

3^{3} cmuscs
 References cont'd

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM \qquad Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992). \qquad Numerical Recipes in C, Cambridge University Press.

