C. Faloutsos 15-826

15-826: Multimedia Databases and Data Mining

Lecture #19: SVD - part III (more case studies) C. Faloutsos

Must-read Material

- Textbook Appendix D
- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

15-826

Copyright: C. Faloutsos (2013)

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- · Indexing similarity search
- Data Mining

15-826

Copyright: C. Faloutsos (2013)

CMU SCS

SVD - Other properties - summary

- can produce orthogonal basis (obvious) (who cares?)
- can solve over- and under-determined linear problems (see C(1) property)
- can compute 'fixed points' (= 'steady state prob. in Markov chains') (see C(4) property)

15-826

Copyright: C. Faloutsos (2013)

CMU SCS		IMPORTANT!
Propert	ies – sneak p	review:
$\mathbf{A}(0): \mathbf{A}_{[n \times m]} =$	$=\mathbf{U}_{[nxr]}\mathbf{\Lambda}_{[rxr]}\mathbf{V}$	r T [rxm]
		v ₁
Document-term	Doc-concept	Concept-term
15-826	Copyright: C. Faloutsos (2013)	9

×	SVD -0	utline of properties	
	(A): obvious(B): less obv(C): least obv		
	15-826	Copyright: C. Faloutsos (2013)	15

Properties - by defn.:

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

A(1):
$$\mathbf{U}^{\mathrm{T}}_{[r \times n]} \mathbf{U}_{[n \times r]} = \mathbf{I}_{[r \times r]}$$
 (identity matrix)

A(2):
$$\mathbf{V}^{\mathrm{T}}_{[\mathrm{r} \times \mathrm{n}]} \mathbf{V}_{[\mathrm{n} \times \mathrm{r}]} = \mathbf{I}_{[\mathrm{r} \times \mathrm{r}]}$$

A(1):
$$\mathbf{U}^{T}_{[r \times n]} \mathbf{U}_{[n \times r]} = \mathbf{I}_{[r \times r]}$$
 (identity matrix)
A(2): $\mathbf{V}^{T}_{[r \times n]} \mathbf{V}_{[n \times r]} = \mathbf{I}_{[r \times r]}$
A(3): $\mathbf{\Lambda}^{k} = \operatorname{diag}(\lambda_{1}^{k}, \lambda_{2}^{k}, ... \lambda_{r}^{k})$ (k: ANY real number)

$$A(4)$$
: $A^T = V \Lambda U^T$

Copyright: C. Faloutsos (2013)

16

17

18

Less obvious properties

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{A}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = ??$$

15-826

Copyright: C. Faloutsos (2013)

Less obvious properties

$$\begin{aligned} &A(0): \ \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \ \boldsymbol{\Lambda}_{[r \times r]} \ \mathbf{V}^{T}_{[r \times m]} \\ &B(1): \ \mathbf{A}_{[n \times m]} \ (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \ \boldsymbol{\Lambda}^{2} \ \mathbf{U}^{T} \\ &\text{symmetric; Intuition?} \end{aligned}$$

15-826

Copyright: C. Faloutsos (2013)

×	CMU SCS	
	Less obvious properties	
	A: term-to-term similarity matrix	
	B(3): ($(\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]}$) $^k = \mathbf{V} \mathbf{\Lambda}^{2k} \mathbf{V}^T$ and	
	B(4): $(\mathbf{A}^T \mathbf{A})^k \sim \mathbf{v}_1 \lambda_1^{2k} \mathbf{v}_1^T$ for $k >> 1$ where	
	\mathbf{v}_1 : [m x 1] first column (singular-vector) of \mathbf{V} λ_1 : strongest singular value	
	15-826 Copyright: C. Faloutsos (2013)	21

5	CMUSCS	
	Property (B5)	
	• Intuition: $ -(\mathbf{A}^T \mathbf{A}) \mathbf{v}' $ what Smith's 'friends' like $ -(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' $ what k-step-away-friends like	
	(ie., after <i>k</i> steps, we get what everybody likes, and Smith's initial opinions don't count)	
	15-826 Copyright: C. Faloutsos (2013)	30

×	CMU SCS		Exercise	
	Ve	erify formula:		
	$A = [1 \ 2]$ b =	= [4]		
	$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$			
	U = ??			
	∧ = ??			
	V =??			
	$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$			
	15-826	Copyright: C. Faloutsos (2013)	42	

C. Faloutsos 15-826

Exercise

Verify formula:

$$\mathbf{A} = [1 \ 2] \quad \mathbf{b} = [4]$$
$$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$$

$$U = [1]$$

$$\mathbf{\Lambda} = [sqrt(5)]$$

$$V= [1/sqrt(5) 2/sqrt(5)]^T$$

$$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$$

Copyright: C. Faloutsos (2013)

Exercise

43

Verify formula:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 4 \end{bmatrix}$$

$$\mathbf{A} = \mathbf{U} \, \mathbf{\Lambda} \, \mathbf{V}^{\mathrm{T}}$$

$$\mathbf{U} = [1]$$

$$\Lambda = [sqrt(5)]$$

$$V= [1/sqrt(5) 2/sqrt(5)]^T$$

$$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b} = [1/5 \ 2/5]^{\mathrm{T}} [4]$$

= $[4/5 \ 8/5]^{\mathrm{T}} : \mathbf{w} = 4/5, \mathbf{z} = 8/5$

15-826

Copyright: C. Faloutsos (2013)

Exercise

Verify formula:

45

Show that w=4/5, z=8/5 is

- (a) A solution to 1*w + 2*z = 4 and
- (b) Minimal (wrt Euclidean norm)

15-826

Copyright: C. Faloutsos (2013)

**	A(0): A C(4): A (fixed	east obvious properties - cont'd $\mathbf{v}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$ $\mathbf{T} \mathbf{A} \mathbf{v}_{1} = \lambda_{1}^{2} \mathbf{v}_{1}$ d point - the dfn of eigenvector for a numetric matrix)	
	15-826	Copyright: C. Faloutsos (2013)	54

CMU SCS

Kleinberg's algo (HITS)

Kleinberg, Jon (1998). *Authoritative sources in a hyperlinked environment*. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.

15-826

Copyright: C. Faloutsos (2013)

CMU SCS

Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

Step 0: find all pages containing the query

Step 1: expand by one move forward and backward

15-826

Copyright: C. Faloutsos (2013)

Kleinberg's algorithm

• Step 1: expand by one move forward and backward

15-826

Copyright: C. Faloutsos (2013)

15-826

Kleinberg's algorithm

Let *E* be the set of edges and **A** be the adjacency matrix:

the (i,j) is 1 if the edge from i to j exists

Let *h* and *a* be [n x 1] vectors with the 'hubness' and 'authoritativiness' scores.

Then:

15-826

Copyright: C. Faloutsos (2013)

64

Kleinberg's algorithm

Then:

$$a_i = h_k + h_l + h_m$$

that is

 $a_i = \text{Sum}(h_j)$ over all j that (j,i) edge exists

or

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

15-826

Copyright: C. Faloutsos (2013)

Kleinberg's algorithm

symmetrically, for the 'hubness':

$$h_i = a_n + a_p + a_q$$

that is

 $h_i = \text{Sum}(q_j)$ over all j that (i,j) edge exists

or

$$h = A a$$

15-826

Copyright: C. Faloutsos (2013)

Kleinberg's algorithm

In conclusion, we want vectors **h** and **a** such that:

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

Recall properties:

C(2):
$$\mathbf{A}_{[n \times m]} \mathbf{v}_{1 [m \times 1]} = \lambda_1 \mathbf{u}_{1 [n \times 1]}$$

C(3): $\mathbf{u}_1^T \mathbf{A} = \lambda_1 \mathbf{v}_1^T$

15-826

Copyright: C. Faloutsos (2013)

CMU SCS

Kleinberg's algorithm

In short, the solutions to

$$\mathbf{h} = \mathbf{A} \mathbf{a}$$
$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

are the <u>left- and right- singular-vectors</u> of the adjacency matrix **A.**

Starting from random a' and iterating, we'll eventually converge

(Q: to which of all the singular-vectors? why?)

15-826

Copyright: C. Faloutsos (2013)

68

69

CMU SCS

Kleinberg's algorithm

(Q: to which of all the singular-vectors? why?)

A: to the ones of the strongest singular-value, because of property B(5):

B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v}^* \sim \text{(constant)} \mathbf{v}_1$

15-826

Copyright: C. Faloutsos (2013)

Kleinberg's algorithm - discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social networs / 'small world' phenomena

15-826

Copyright: C. Faloutsos (2013)

71

(2)	simplified) PageRan	K
	algorithm	
• $\mathbf{B} \mathbf{p} =$	l * p	
to the	is the eigenvector that correctinghest eigenvalue (=1, since the normalized)	
• Why d	oes such a p exist?	
	sts if B is nxn, nonnegative, irrecon–Frobenius theorem]	lucible
15-826	Copyright: C. Faloutsos (2013)	78

Property #3

- If $A_{\left[nxn\right] }$ is a real, symmetric matrix
- Then it has n real eigenvalues
- And they agree with its *n* singular values, except possibly for the sign

15-826

Copyright: C. Faloutsos (2013)

CMU SCS

Parenthesis: intuition behind eigenvectors

- Definition
- 3 properties
- intuition

15-826

Copyright: C. Faloutsos (2013)

Query feedbacks enhancements

The solution $\mathbf{a} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathsf{T}} \mathbf{b}$ works, but needs expensive SVD each time a new query arrives
GREAT Idea #3: Use 'Recursive Least Squares', to adapt a incrementally.
Details: in paper - intuition:

15-826 Copyright: C. Faloutsos (2013) 113

CMU SCS

Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts' (LSI)
- ullet ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

15-826

Copyright: C. Faloutsos (2013)

122

CMU SCS

Conclusions cont'd

- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

15-826

Copyright: C. Faloutsos (2013)

123

CMU SO

References

 Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

• Chen, C. M. and N. Roussopoulos (May 1994). Adaptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2013)

124

CMU SCS

References cont'd

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992).
 Numerical Recipes in C, Cambridge University Press.

15-826

Copyright: C. Faloutsos (2013)

125