
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SVD - Motivation

- problem \#1: text - LSI: find 'concepts'

terma document	data	information	retrieval	brain	lung
CS-TR1	1	1	1	0	0
CS-TR2	2	2	2	0	0
CSTR3	1	1	1	0	0
CS-TR4	5	5	5	0	0
MED-TR1	0	0	0	2	2
MED-TR2	0	0	0	3	3
MED-TR3	0	0	0	1	1

Copyright: C. Faloutsos (2013)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SVD - Motivation - problem \#2: compress / reduce dimensionality

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right] \times\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]} \\
& \xrightarrow[3 \times 2]{ } 2 \times 1 \xrightarrow{3 \times 1} \\
& \text { 15-826 Copyright: C. Faloutsos (2013) }
\end{aligned}
$$

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- A: $\mathrm{n} \times \mathrm{m}$ matrix (eg., n documents, m terms)
- U: nx r matrix (n documents, r concepts)
\qquad
- $\boldsymbol{\Lambda}: \mathrm{rx} \mathrm{r}$ diagonal matrix (strength of each 'concept') (r : rank of the matrix)
\qquad
- \mathbf{V} : m x r matrix (m terms, r concepts)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

$3 \mathrm{H}^{\mathrm{cmuscs}}$
 SVD - Interpretation \#1

'documents', 'terms' and 'concepts':

- \mathbf{U} : document-to-concept similarity matrix
- V: term-to-concept sim. matrix
- $\boldsymbol{\Lambda}$: its diagonal elements: 'strength' of each concept

$\int^{33^{\text {cuscs }}}$ SVD - Interpretation \#1

\qquad
'documents', 'terms' and 'concepts':
Q : if \mathbf{A} is the document-to-term matrix, what \qquad is $\mathbf{A}^{\mathrm{T}} \mathbf{A}$?
A:
$\mathrm{Q}: \mathbf{A ~}^{\mathrm{T}}$?
A:

\qquad

	SVD properties

- \mathbf{V} are the eigenvectors of the covariance matrix $\mathbf{A}^{\mathrm{T}} \mathbf{A}$
- \mathbf{U} are the eigenvectors of the Gram (innerproduct) matrix $\mathbf{A A}^{\mathrm{T}}$

Further reading:

1. Ian T. Jolliffe, Principal Component Analysis (2 $2^{\text {nd }}$ ed), Springer, 2002. 2. Gilbert Strang, Linear Algebra and Its Applications (4th ed), Brooks Cole, 2005.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Copyright: C. Faloutsos (2013)
35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad


```
- More details
- Q : how exactly is dim. reduction done?
- A: set the smallest singular values to zero:
\(\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 2 & 2 & 2 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}0.18 & 0 \\ 0.36 & 0 \\ 0.18 & 0 \\ 0.90 & 0 \\ 0 & 0.53 \\ 0 & 0.80 \\ 0 & 0.27\end{array}\right] \times\left[\begin{array}{llll}9.64 & 0 \\ 0 & 5.29\end{array}\right] \mathrm{X}\)
Copyright: C. Faloutsos (2013) \(\left[\begin{array}{lllll}0.58 & 0.58 & 0.58 & 0 & 0 \\ 0 & 0 & 0 & 0.71 & 0.71\end{array}\right]\)
15-826
Copyright: C. Faloutsos (2013)
41
```


SVD - Interpretation \#2

15-826
Copyright: C. Faloutsos (2013)
42

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Best rank-k approximation in L2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$\int^{\text {SVD - Interpretation \#3 }}$

- finds non-zero 'blobs' in a data matrix

$$
\left[\begin{array}{lll|ll}
1 & 1 & 1 & 0 & 0 \\
2 & 2 & 2 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 \\
5 & 5 & 5 & 0 & 0 \\
\hline 0 & 0 & 0 & 2 & 2 \\
0 & 0 & 0 & 3 & 3 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0.18 & 0 \\
0.36 & 0 \\
0.18 & 0 \\
0.90 & 0 \\
0 & 0.53 \\
0 & 0.80 \\
0 & 0.27
\end{array}\right] \times\left[\begin{array}{ll}
9.64 & 0 \\
0 & 5.29
\end{array}\right] \mathrm{x}
$$

15-826
Copyright: C. Faloutsos (2013)
56

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\int^{3{ }_{3}}$ SVD - Interpretation \#3

- $\mathrm{A}:$ rank $=2$ (2 linearly independent rows/ cols)

$3^{\text {SVD - Interpretation \#3 }}$

- A: rank $=2$ (2 linearly independent rows/ cols) \qquad
\qquad
\qquad
\qquad orthogonal??

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SVD - Interpretation \#3

- and the singular values are:

$$
\left[\begin{array}{lllll}
1 / \text { sqrt(3) } & 1 / \mathrm{sqrt}(3) & 1 / \mathrm{sqrt}(3) & 0 & 0 \\
0 & 0 & 0 & 1 / \operatorname{sqrt}(2) & 1 / \mathrm{sqrt}(2)
\end{array}\right]
$$

15-826
Copyright: C. Faloutsos (2013)
62

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SVD - Detailed outline
\qquad

- Motivation
- Definition - properties \qquad
- Interpretation
- Complexity
- Case studies
- Additional properties

\qquad
\qquad
\qquad
- \mathbf{V} : term-to-concept similarities
- $\quad \boldsymbol{\Lambda}$: strength of each concept \qquad
dim. reduction: keep the first few strongest singular values ($80-90 \%$ of 'energy')
- SVD: picks up linear correlations
- SVD: picks up non-zero 'blobs'
\qquad
\qquad
\qquad
References
- Berry, Michael: http://www.cs.utk.edu/~1si/
- Fukunaga, K. (1990). Introduction to Statistical
Pattern Recognition, Academic Press.
- Press, W. H., S. A. Teukolsky, et al. (1992).
Numerical Recipes in C, Cambridge University
Press.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

