
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

'Fat' fractals \& R-tree performance on region data

- Problem [Proietti+,'99]
- Given
- N (\# of data regions)
- estimate how many of them will qualify for the average range query ($q 1 \times \mathrm{q} 2 \times \ldots \mathrm{qE}$)
Of course, we need more info Q: what?

15-826
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{3} \mathrm{cmuscs}$		
R-tree performance on regionptional		
A: the distributions of their sizes		
Q: do we also need some info about the locations?		
A: no (not for range queries)		
${ }_{15.826}$	Copyright C. Faloutos (2013)	,

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

- Once we know 'B' (and the total area)
- we can second-guess the individual sizes
- and then apply the [Pagel +93$]$ formula
- Bottom line:

15-826
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Dataset	N	A	B
LAKES	816	75,910	0.85
ISLANDS	470	136,893	0.60
REGIONS	757	190,526	0.70

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- fractals
- intro
- applications
disk accesses for R-trees (range queries) \qquad
dimensionality reduction
selectivity in M-trees
dim. curse revisited
"fat fractals"
- quad-tree analysis [Gaede +]
- nn queries [Belussi+]

15-826
Copyright: C. Faloutsos (2013)
23
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Problem: how many quadtree nodes will we need, to store a region in some level of approximation? [Gaede+96]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Assume only 'gray' and 'white' nodes (ie., no volume') Assume that p_{g} is given - how many gray nodes at level i ? \qquad
\qquad

15-826
32
\qquad
\qquad
\qquad
\qquad
\qquad

Fractals and Quadtrees

Assume only 'gray' and 'white' nodes (ie., no volume') Assume that p_{g} is given - how many gray nodes at level i ?

A: 1 at level 0 ;
$4^{*} \mathrm{p}_{\mathrm{g}}$
$\left(4 * \mathrm{p}_{\mathrm{g}}\right) *\left(4 * \mathrm{p}_{\mathrm{g}}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

- I.e.:

level of quadtree
15-826
Copyright: C. Faloutsos (2013)
35

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

- Final observation: relationship between p_{g} and fractal dimension?
- A: very close: \qquad $\left(4^{*} p_{g}\right)^{\mathrm{i}}=$ \# of gray nodes at level $i=$ \# of Hausdorff grid-cells of side (1/2) ${ }^{\mathrm{i}}=r$ \qquad Eventually: $\mathrm{D}_{\mathrm{H}}=2+\log _{2}\left(p_{\mathrm{g}}\right)$ and, for E-d spaces $\mathrm{D}_{\mathrm{H}}=\mathrm{E}+\log _{2}\left(p_{g}\right)$ \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Final conclusions:

- self-similarity leads to estimates for \# of zvalues $=\#$ of quadtree/oct-tree blocks
- close dependence on the Hausdorff fractal dimension of the boundary \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

- Q: in NN queries, what is the effect of the shape of the query region? [Belussi+95]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

15-826
Copyright: C. Faloutsos (2013)

\qquad
\qquad

- Q: what about the intercept? Ie., what can we say about N_{2} and $\mathrm{N}_{\mathrm{inf}}$ \qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\longrightarrow
\qquad

- Consider sphere with volume $\mathrm{V}_{\text {inf }}$ and r ' radius
- $\left(\mathrm{r} / \mathrm{r}^{\prime}\right)^{\wedge} \mathrm{E}=\mathrm{V}_{2} / \mathrm{V}_{\text {inf }}$
- $\left(\mathrm{r} / \mathrm{r}^{\prime}\right)^{\wedge} \mathrm{D}_{2}=\mathrm{N}_{2} / \mathrm{N}_{2}{ }^{\prime}$
- $\mathrm{N}_{2}{ }^{\prime}=\mathrm{N}_{\text {inf }}$ (since shape does not matter)
- and finally:
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- fractals
- intro
- applications
- disk accesses for R-trees (range queries)
- dimensionality reduction \qquad
- selectivity in M-trees
- dim. curse revisited
- "fat fractals"
- quad-tree analysis [Gaede+]
- nn queries [Belussi+]
\qquad

15-826 \qquad

${ }^{3} \mathrm{cmuscs}$
 Fractals - overall conclusions

- self-similar datasets: appear often
- powerful tools: correlation integral, NCDF, rank-frequency plot
- intrinsic/fractal dimension helps in - estimations (selectivities, quadtrees, etc)
- dim. reduction / dim. curse
- (later: can help in image compression...)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{$3{ }^{3}$ cmuscs}

\hline \multicolumn{3}{|c|}{References}

\hline \multicolumn{3}{|l|}{| 1. Belussi, A. and C. Faloutsos (Sept. 1995). Estimating the Selectivity of Spatial Queries Using the `Correlation' Fractal Dimension. Proc. of VLDB, Zurich, Switzerland. |
| :--- |
| 2. Faloutsos, C. and V. Gaede (Sept. 1996). Analysis of the zordering Method Using the Hausdorff Fractal Dimension. VLDB, Bombay, India. |}

\hline \multicolumn{3}{|l|}{3. Proietti, G. and C. Faloutsos (March 23-26, 1999). I/O complexity for range queries on region data stored using an Rtree. International Conference on Data Engineering (ICDE), Sydney, Australia.}

\hline 15.826 \& Copyright: C. Faloutsos (2013) \& 58

\hline
\end{tabular}

