15-826: Multimedia Databases and Data Mining

Lecture \#8: Fractals - introduction

> C. Faloutsos
\qquad
\qquad

\qquad
\qquad
\qquad Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp.
\qquad
Recommended Material
optional, but very useful:

- Manfred Schroeder Fractals, Chaos, Power
Laws: Minutes from an Infinite Paradise

W.H. Freeman and Company, 1991
(on reserve in the library)
$-\quad$ Chapter 10: boxcounting method
$-\quad$ Chapter 1: Sierpinski triangle
Copyight: . Faloutsos (2013)

${ }^{15.826} \quad$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$33^{\text {cnuscs }}$	
	Road map
- Motivation - 3 problems / case studies	
\Rightarrow - Definition of fractals and power laws	
- Solutions to posed problems	
- More examples and tools	
- Discussion - putting fractals to work!	
- Conclusions - practitioner's guide	
- Appendix: gory details - boxcounting plots	
	$5_{5.826}$ Coppright C. Faloutsos (2013)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Dimensionality??
15-826

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\mathrm{y}^{\text {cmuscs }}$ EXPLANATIONS			
Intrinsic ('fractal') dimension			
- Global fractal dimension? - A: if - $\operatorname{sum}_{\text {all_P }}\left[n n_{p}(<=r)\right] \sim$ $\mathrm{r}^{\wedge} 1$ Then: exp = global f.d. - If this is true for all points of the cloud - Then the exponent is the global f.d. - Or simply the f.d.			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {cmuscs }}$	
Observations:	
- Euclidean objects have integer fractal dimensions - point: 0 - lines and smooth curves: 1 - smooth surfaces: 2 - fractal dimension -> roughness of the periphery	
${ }_{15} 5.826 \quad$ Copyright C. Faloutso (2013)	27

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Important properties

\qquad
\qquad

- $\mathrm{fd}=$ embedding dimension -> uniform \qquad pointset
- a point set may have several fd, depending \qquad on scale

$3^{3}{ }^{\text {cusscs }}$
 Important properties

- $\mathrm{fd}=$ embedding dimension -> uniform pointset
- a point set may have several fd, depending \qquad on scale

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Part of 'self-* storage' project [Wang+'02] \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

More on 80/20: PQRS

- Part of 'self-* storage' project [Wang+'02]

$15-826$
Copyright: C. Faloutsos (2013)
49
\qquad
- fractal: a set of points that is self-similar
- multifractal: a probability density function \qquad that is self-similar

Many other time-sequences are bursty/ clustered: (such as?)

15-826
Copyright: C. Faloutsos (2013)
50

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Tape\#1	$\xrightarrow{\text { Tape } \# ~ N}$
- x - 4	

tapes needed, to retrieve n records?
(\# days down, due to failures / hurricanes / communication noise...)
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
A famous power law: Zipf's
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Other applications: Internet

- How does the internet look like?
- Internet routers: how many neighbors within h hops?

15-826
Copyright: C. Faloutsos (2013)
79

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
cree plot for Internet domains (log log) [sigcomm99]
$15-826$ Copyright: C. Faloutsos (2013)

Fractals \& power laws:

appear in numerous settings:

- medical
- geographical / geological
- social
- computer-system related

15-826
Copyright: C. Faloutsos (2013)
85
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Even more power laws: - Income distribution (Pareto's law) - size of firms - publication counts (Lotka's law)
${ }_{15} 5.826$ Copyight C Falutsos (2013)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Even more power laws:

- web hit counts [w/ A. Montgomery]
\qquad
\qquad

Fractals \& power laws:

\qquad
appear in numerous settings:

- medical
- geographical / geological \qquad
- social
- computer-system related

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Power laws, cont'd

- In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]
- length of file transfers [Crovella+Bestavros '96]
- duration of UNIX jobs [Harchol-Balter]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Points; areas (-> fat fractals), eg:

Settings for fractals:

- customer feature vectors (age, income, frequency of visits, amount of sales per visit)

Copyright: C. Faloutsos (2013)

$3{ }^{3}$ cmuscs
 Some uses of fractals:

- Detect non-existence of rules (if points are uniform)
- Detect non-homogeneous regions (eg., legal \qquad login time-stamps may have different fd than intruders')
- Estimate number of neighbors / customers / competitors within a radius \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Use of multifractals:

- Estimate tape/disk accesses
- how many of the 100 tapes contain my 50 phonecall records?
- how many days without an accident?

Use of multifractals

- how often do we exceed the threshold?
\#bytes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

$3^{\text {cnuscs }}$	
Road map	
- Motivation - 3 problems / case studies	
- Definition of fractals and power laws	
- Solutions to posed problems	
- More examples and tools	
- Discussion - putting fractals to work!	
\square - Conclusions - practitioner's guide	
- Appendix: gory details - boxcounting plots	
	${ }_{\text {c- } 5826}$ Copyight C. F.aloutos (2013)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Conclusions - cont'd

Self-similarity \& power laws: appear in many cases

Bad news:
lead to skewed distributions
(no Gaussian, Poisson, uniformity, independence, mean, variance)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Conclusions

- tool\#1: (for points) 'correlation integral':
\quad (\#pairs within $<=r$) vs (distance r)
- tool\#2: (for categorical values) rank-
\quad frequency plot (a'la Zipf)
- tool\#3: (for numerical values) CCDF:
Complementary cumulative distr. function
(\#of elements with value $>=a$)
${ }^{15-826} \quad$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Practitioner's guide:

- tool\#2: rank-frequency plot (for categorical attributes)

15-826
Copyright: C. Faloutsos (2013)
125

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Strongly recommended intro book:
- Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991
- Classic book on fractals:
- B. Mandelbrot Fractal Geometry of Nature, W.H. Freeman, 1977

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
References
- [vidb96] Christos Faloutsos, Yossi Matias and Avi
Silberschatz, Modeling Skewed Distributions Using
Multifractals and the '80-20 Law’ Conf. on Very Large
Data Bases (VLDB), Bombay, India, Sept. 1996.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
References
- [vidb96] Christos Faloutsos and Volker Gaede Analysis
of the Z-Ordering Method Using the Hausdorff Fractal
Dimension VLD, Bombay, India, Sept. 1996
- [sigcomm99] Michalis Faloutsos, Petros Faloutsos and

\quad| Christos Faloutsos, What does the Internet look like? |
| :--- |
| Empirical Laws of the Internet Topology, SIGCOMM |
| 1999 |

${ }_{15}^{15-826}$
Copyright C. Faloutsos (2013)

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

F cmuscs
 Appendix - Gory details

- Bad news: There are more than one fractal dimensions
- Minkowski fd; Hausdorff fd; Correlation fd; Information fd
- Great news:
- they can all be computed fast!
- they usually have nearby values

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\sqrt{3}^{\text {Definitions }(c o n t}{ }^{\text {cmscs }}$)

- Many more fractal dimensions Dq (related to Renyi entropies):
$D_{q}=\frac{1}{q-1} \frac{\partial \log \left(\sum p_{i}^{q}\right)}{\partial \log (r)} \quad q \neq 1$
$D_{1}=\frac{\partial \sum p_{i} \log \left(p_{i}\right)}{\partial \log (r)}$

15-826
Copyright: C. Faloutsos (2013)
140
Hausdorff or box-counting fd:

- Box counting plot: $\log (N(r))$ vs $\log (r)$
- r: grid side
- $\mathrm{N}(\mathrm{r})$: count of non-empty cells
- (Hausdorff) fractal dimension D0:

$$
D_{0}=-\frac{\partial \log (N(r))}{\partial \log (r)}
$$

\qquad

\qquad
\qquad
\qquad
\qquad

Observations, cont'd

- in general, the Dq's take similar, but not identical, values.
- except for perfectly self-similar point-sets, where $\mathrm{Dq}=\mathrm{Dq}$ ' for any q, q^{\prime}

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

