

CMU SC

15-826: Multimedia Databases and Data Mining

Lecture#5: Multi-key and Spatial Access Methods - II C. Faloutsos

CMU SCS

Must-read material

- MM-Textbook, Chapter 5.1
- Ramakrinshan+Gehrke, Chapter 28.4
- J. Orenstein, Spatial Query Processing in an Object-Oriented Database System, Proc. ACM SIGMOD, May, 1986, pp. 326-336, Washington D.C.

15-826

Copyright: C. Faloutsos (2013)

2

CMU SC

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
-
- Indexing similarity search
 - · Data Mining

15-826

Copyright: C. Faloutsos (2013)

CMU SCS					
SAMs: solutions					
• z-o	rdering				
• R-t	• R-trees				
• (gr	• (grid files)				
	w would you organize, e.g., <i>n</i> -dim nts, on disk? (<i>C</i> points per disk page)				
15-826	Copyright: C. Faloutsos (2013)	18			

Z-ordering

z-ordering/bit-shuffling/linear-quadtrees

Q: How to generate this curve (z = f(x,y))?

A1: 'z' (or 'N') shapes, RECURSIVELY

order-1 order-2

... order (n+1)

15-826

Copyright: C. Faloutos (2013)

(Gray codes)

• Ingenious way to spot flickering LED

15-826

Copyright: C. Faloutsos (2013)

(Gray codes)

• Ingenious way to spot flickering LED

15-826

Copyright: C. Faloutsos (2013)

(Gray codes)

• Ingenious way to spot flickering LED

$$\begin{array}{ccc}
0 & 00 \\
1 & & 11 \\
& 10
\end{array}$$

15-826

Copyright: C. Faloutsos (2013)

ř	CMU	
Ş		

Conclusions

• z-ordering is a great idea (n-d points -> 1-d points; feed to B-trees)

- used by TIGER system http://www.census.gov/geo/www/tiger/
- and (most probably) by other GIS products
- works great with low-dim points

Copyright: C. Faloutsos (2013)

118