\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- Ramakrinshan+Gehrke, Chapter 28.4
- J. Orenstein, \qquad Dis S Pr ACM SIGMOD, May Database System, Proc. ACM SIGMOD, May, 1986, pp. 326-336, Washington D.C.
\qquad
\qquad
\qquad

$3^{3}{ }^{\text {cutscs }}$	
Outline	
Goal: ‘Find similar / interesting things’ - Intro to DB	
- Indexing - similarity search - Data Mining	
${ }_{15} 5.266$	3

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {max }}$		
Indexing - Detailed outline		
- primary key indexing - secondary key / multi-key indexing		
- spatial access methods		
- problem dfn		
- z -ordering		
- R-trees		
- ...		
- text		

\qquad
\qquad

- primary key indexing
- secondary key / multi-key indexing \qquad
- spatial access methods
- problem dfn \qquad
- z-ordering
- R-trees \qquad
\qquad
- \ldots \qquad

$\mathrm{m}^{\mathrm{cmuscs}}$
 Spatial Access Methods problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer spatial queries (like??) \qquad

\qquad
\qquad

15-826
Copyright: C. Faloutsos (2013)

Spatial Access Methods problem

\qquad

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer

> - point queries

- range queries
- k -nn queries
- spatial joins ('all pairs' queries)

Spatial Access Methods problem

\qquad

- Given a collection of geometric objects (points, lines, polygons, ...) \qquad
- organize them on disk, to answer
- point queries \qquad
- range queries
- k-nn queries
- spatial joins ('all pairs' queries)

\qquad
\qquad
\qquad

$3^{\text {cmuscs }}$
 Spatial Access Methods problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
- point queries
- range queries
- k -nn queries
- spatial joins ('all pairs' queries)

15-826
Copyright: C. Faloutsos (2013)

Spatial Access Methods problem

\qquad
\qquad (points, lines, polygons, ...)

- organize them on disk, to answer

\qquad

Spatial Access Methods problem

- Given a collection of geometric objects (points, lines, polygons, ...)
- organize them on disk, to answer
- point queries
- range queries
- k-nn queries
- spatial joins ('all pairs' within ε)

15-826

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\int^{3 / 3} \quad$ Indexing - Detailed outline

\qquad

- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- problem dfn
- z -ordering
- R-trees \qquad
- text \qquad
- 1.226 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Q: solution? (w/ good clustering, and easy to compute, for $2-\mathrm{d}$ and n-d?)

15-826
Copyright: C. Faloutsos (2013)
29

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
bit-shuffling

x	y
00	11

y

${ }^{00}{ }_{01}{ }^{10}{ }_{11} \mathrm{x}$
15-826
Copyright: C. Faloutsos (2013)
35
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

$\int^{\text {z-ordering }}$

Drill: z-value of magenta cell, with the three methods? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
W E

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

z-ordering - Detailed outline

- spatial access methods
- z -ordering
- main idea - 3 methods
- use w/ B-trees; algorithms (range, knn queries ...)
- analysis; variations
- R-trees
- ...
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
z-ordering - usage \& algo's
Q2': range queries - how to reduce \# of qualifying of ranges?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

z-ordering - usage $\boldsymbol{\&}$ algo's
Q2'": range queries - how to break a query into ranges?

15-826
Copyright: C. Faloutsos (2013)
55
\qquad
\qquad
\qquad

$\int^{\text {z-ordering - usage \& algo's }}$

Q2'’: range queries - how to break a query into ranges?
A: recursively, quadtree-style; decompose only non-full quadrants \qquad

9,11-15 \qquad
\qquad

15-826 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
Q: How to search (range etc queries) - eg 'red' range query

z	obj-id	
0010	etc	
0101	A	
1000	C	
$11^{* *}$	B	

15-826
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

zordering - regions

Almost identical to range queries for point data, except for the "don't cares" - i.e., z1 = 1100 ?? $11^{* *}=z 2$
Specifically: does z1 contain/avoid/intersect \qquad z2?
Q: what is the criterion to decide?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {cmuscs }}$		
z-ordering - regions		
$\mathrm{z} 1=1100$?? $11^{* *}=\mathrm{z} 2$		
Specifically: does zl contain/avoid/intersect z2?		
Q : what is the criterion to decide?		
A: Prefix property: let r1, r2 be the corresponding regions, and let r 1 be the smallest ($=>$ z1 has fewest '*'s). Then:		
15.826	Copyright C. F.alutos (2013)	${ }^{5}$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Drill (True/False). Given:

- $\mathrm{zl}=011001^{* *}$
- z2 $=01^{* * * * * *}$
- $\mathrm{z} 3=0100^{* * * *}$

T/F r2 contains r1
T/F r3 contains r1
T/F r3 contains r2 \qquad

15-826
Copyright: C. Faloutsos (2013)
77

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

z-ordering - regions

Spatial joins: find (quickly) all
counties intersecting lakes

Z	obj-id	etc	Z	obj-id	etc
0010	ALG		0011	Erie	
\ldots	\ldots		0101	Erie	
1000	WAS		\cdots		
11**	ALG		10**	Ont.	

15-826
Copyright: C. Faloutsos (2013)
85
\qquad

Spatial joins: find (quickly) all
counties intersecting lakes

Solution: merge the lists of (sorted) z-values, looking for the prefix property
footnote\#1: ‘*’ needs careful treatment footnote\#2: need dup. elimination

15-826
Copyright: C. Faloutsos (2013)
${ }^{86}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

'Looks' better (never long jumps). How to derive it?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
(How long is the coastline, say, of England?
Paradox: The answer changes with the yardstick -> fractals ...)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Z-ordering - analysis
Q: So, is Hilbert really better?
A: 27\% fewer runs, for 2-d (similar for 3-d)

Q: are there formulas for \#runs, \#of quadtree
blocks etc?
A: Yes ([Jagadish; Moon+ etc] see textbook)
${ }_{15}$ (5.826

\qquad
\qquad
\qquad
Q: So, is Hilbert really better?
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

