
\qquad $\underline{ }$
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
[Bentley75] J.L. Bentley: Multidimensional Binary Search Trees Used for Associative \qquad Searching, CACM, 18,9, Sept. 1975.

- Ramakrinshan+Gehrke, Chapter 28.1-3 \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Indexing - Detailed outline
- primary key indexing
- secondary key / multi-key indexing
- spatial access methods
- text
- \ldots

${ }^{15-826}$
\qquad
\qquad

- primary key indexing
- spatial access methods
- text
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
Query types:
- exact match
- 'job-code' $=$ 'PGM' and 'dept' $=$ ' $\mathrm{R} \& \mathrm{D}$ ' \qquad
\qquad
\qquad

Sec. key indexing - Query types - cont'd - boolean - 'job-code'='ADMIN' or salary $>20 \mathrm{~K}$ -nn - salary $\sim 30 \mathrm{~K}$	
${ }_{15 \text { S.826 }}$ Copyright: C.Falutsos (2013)	6

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

15-826
Copyright: C. Faloutsos (2013)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Quad-trees - search?
• pseudocode:
range-query(tree-ptr, range)
if (tree-ptr == NULL) exit;
if (tree-ptr->point within range) \{
print tree-ptr->point \}
for each quadrant \{
if (range intersects quadrant) \{
range-query (tree-ptr->quadrant-ptr, range); ;
\} \quad Copyright c. Faloutsos (2013)
\qquad
\qquad
\qquad if (tree-ptr $==$ NULL) exit; if (tree-ptr->point within range) \{ \qquad
\qquad
\qquad

Quad-trees - k-nn search?

- k-nearest neighbor algo - more complicated:
- find 'good' neighbors and put them in a stack
\qquad
- go to the most promising quadrant, and update the stack of neighbors
- until we hit the leaves

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

$3^{3}{ }^{\text {curscs }}$
 Quad-trees - discussion

- but: unsuitable for higher-d spaces (why?)
- A: 2^{\wedge} d pointers, per node!
- Q: how to solve this problem? \qquad
- A: k-d-trees!

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

cnuscs
 k-d trees - discussion

- great for main memory \& low 'd' $(\sim<10)$
- Q: what about high-d?
- A:
- Q: what about disk
- A:
\qquad

\qquad
\qquad
\qquad

$33^{\text {cnuscs }}$
References
- [Bentley75] J.L. Bentley: Multidimensional Binary Search Trees Used for Associative Searching, CACM, 18,9, Sept. 1975. - [Finkel74] R.A. Finkel, J.L. Bentley: Quadtrees: A data structure for retrieval on composite keys, ACTA Informatica,4,1, 1974 - Applet: eg., http://donar.umiacs.umd.edu/quadtree/points/ kdtree.html
15.826 Copyright C. F Falutsos (2013) 47

