1 Q1 – Dynamic time warping [25 pts]

Solution: The answer to the given dataset is:

0002.dat 0007.dat 18510844

See c++ code (link).

2 Q2 – Fractals [25 pts]

Solution:

1. See python script (link).

![Koch Surface](image)

(a) K_3

(b) K_4

Figure 1: Example Koch surface for K_3 and K_4

2. The Hausdorff plot for the points of K_4 is shown in Figure 2. This is plotted by using the package provided in the handout. The slope is -2.090, and therefore the Hausdorff or D_0 fractal dimension is 2.090. The slope of the correlation integral of Koch surface is $\log(13)/\log(3) = 2.3347$ in theory.
3 Q3 – Separability [25 pts]

Solution:

1. Figure 2 shows the correlation integral of dataset S, and of dataset H.

2. Both dataset H and S are not uniformly distributed in 4D space since their fractal dimension (slope of correlation integral) is less than 4.

3. H and S are separable.

4. Figure 2 also draws the distribution of distances of cross-pairs in $S \times H$. It drops at the point where the distance is about 10, and there are no cross-pairs below distance ≈ 5. H and S are actually hyper-planes in 4D space.
4 Q4 – Power Law in Graphs [25 pts]

Solution:

1. The six degree plots are listed as below, in Figures 3, 4, 5.

![Figure 3: The rank-degree and degree-count plot for total-degree](image)

![Figure 4: The rank-degree and degree-count plot for in-degree](image)

2. There are 300 fake patents.
3. There is a spike at degree of 300 in Figure 3(b). This spike is the one responsible for the plateau in Figure 3(a), at rank\(\approx 100-1,000\) and degree (of course) \(d \approx 300\). Because the fake patents form a nearly perfect clique, and there is at most one edge between two patents, the correct guess is 300. And their in-degree or out-degree will be \((300, 299, \ldots, 1)\).
4. The injected fake patents are numbered from 1000335 to 1000634. Kudos to you guys who found those fake patents!
Figure 5: The rank-degree and degree-count plot for out-degree