15-826: Multimedia Databases and Data Mining

Lecture #25: Time series mining and forecasting
Christos Faloutsos

Must-Read Material
• Byong-Kee Yi, Nikolaos D. Sidiropoulos, Theodore Johnson, H.V. Jagadish, Christos Faloutsos and Alex Biliris, Online Data Mining for Co-Evolving Time Sequences, ICDE, Feb 2000.
• Chungmin Melvin Chen and Nick Roussopoulos, Adaptive Selectivity Estimation Using Query Feedbacks, SIGMOD 1994

Thanks
Deepay Chakrabarti (CMU)
Prof. Dimitris Gunopulos (UCR)
Spiros Papadimitriou (CMU)
Mengzhi Wang (CMU)
Prof. Byoung-Kee Yi (Pohang U.)
Outline

• Motivation
 • Similarity search – distance functions
 • Linear Forecasting
 • Bursty traffic - fractals and multifractals
 • Non-linear forecasting
 • Conclusions

Problem definition

• Given: one or more sequences
 \(x_1, x_2, \ldots, x_t, \ldots \)
 \((y_1, y_2, \ldots, y_t, \ldots) \)

• Find
 – similar sequences; forecasts
 – patterns; clusters; outliers

Motivation - Applications

• Financial, sales, economic series
• Medical
 – ECGs +; blood pressure etc monitoring
 – reactions to new drugs
 – elderly care
Motivation - Applications (cont’d)

• ‘Smart house’
 – sensors monitor temperature, humidity, air quality
• video surveillance

Motivation - Applications (cont’d)

• civil/automobile infrastructure
 – bridge vibrations [Oppenheim+02]
 – road conditions / traffic monitoring

Motivation - Applications (cont’d)

• Weather, environment/anti-pollution
 – volcano monitoring
 – air/water pollutant monitoring
Motivation - Applications (cont’d)

- Computer systems
 - ‘Active Disks’ (buffering, prefetching)
 - web servers (ditto)
 - network traffic monitoring
 - ...

Stream Data: Disk accesses

<table>
<thead>
<tr>
<th>#bytes</th>
<th>Disk traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000000</td>
<td></td>
</tr>
<tr>
<td>1500000</td>
<td></td>
</tr>
<tr>
<td>1000000</td>
<td></td>
</tr>
<tr>
<td>500000</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Problem #1:

Goal: given a signal (e.g., #packets over time)

Find: patterns, periodicities, and/or compress

- lynx caught per year
- (packets per day; temperature per day)
Problem #2: Forecast

Given x_t, x_{t-1}, …, forecast x_{t+1}

Problem #2’: Similarity search

E.g., Find a 3-tick pattern, similar to the last one

Problem #3:

- Given: A set of correlated time sequences
- Forecast ‘Sent(t)’
Important observations

Patterns, rules, forecasting and similarity indexing are closely related:
• To do forecasting, we need
 – to find patterns/rules
 – to find similar settings in the past
• to find outliers, we need to have forecasts
 – (outlier = too far away from our forecast)

Outline

• Motivation
 ➤ Similarity Search and Indexing
 • Linear Forecasting
 • Bursty traffic - fractals and multifractals
 • Non-linear forecasting
 • Conclusions

Outline

• Motivation
 ➤ Similarity search and distance functions
 – Euclidean
 – Time-warping
 • …
Importance of distance functions

Subtle, but absolutely necessary:

- A ‘must’ for similarity indexing (-> forecasting)
- A ‘must’ for clustering

Two major families
- Euclidean and Lp norms
- Time warping and variations

Euclidean and Lp

\[D(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (x_i - y_i)^2 \]

\[L_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p} \]

- \(L_1\): city-block = Manhattan
- \(L_2\) = Euclidean
- \(L_{\infty}\)

Observation #1

- Time sequence -> n-d vector

Day-n

... Day-2

Day-1
Observation #2

Euclidean distance is closely related to
- cosine similarity
- dot product
- 'cross-correlation' function

Time Warping

• allow accelerations - decelerations
 – (with or w/o penalty)
• THEN compute the (Euclidean) distance (+ penalty)
• related to the string-editing distance

‘stutters’:
Time warping

Q: how to compute it?
A: dynamic programming

\[D(i, j) = \text{cost to match} \]

prefix of length \(i \) of first sequence \(x \) with prefix of length \(j \) of second sequence \(y \)

Thus, with no penalty for stutter, for sequences \(x_1, x_2, \ldots, x_i; \ y_1, y_2, \ldots, y_j \):

\[
D(i, j) = \min \begin{cases}
D(i - 1, j - 1) & \text{no stutter} \\
D(i - 1, j) & \text{x-stutter} \\
D(i, j - 1) & \text{y-stutter}
\end{cases}
\]

VERY SIMILAR to the string-editing distance

\[
D(i, j) = \| x[i] - y[j] \| + \min \begin{cases}
D(i - 1, j - 1) & \text{no stutter} \\
D(i - 1, j) & \text{x-stutter} \\
D(i, j - 1) & \text{y-stutter}
\end{cases}
\]
Time warping

- Complexity: $O(M*N)$ - quadratic on the length of the strings
- **Many** variations (penalty for stutters; limit on the number/percentage of stutters; …)
- popular in voice processing [Rabiner + Juang]

Other Distance functions

- piece-wise linear/flat approx.; compare pieces [Keogh+01] [Faloutsos+97]
- ‘cepstrum’ (for voice [Rabiner+Juang])
 - do DFT; take log of amplitude; do DFT again!
- Allow for small gaps [Agrawal+95]
 - See tutorial by [Gunopulos + Das, SIGMOD01]

Other Distance functions

- In [Keogh+, KDD’04]: parameter-free, MDL based
Conclusions

Prevailing distances:
– Euclidean and
– time-warping

Outline

• Motivation
• Similarity search and distance functions
→ Linear Forecasting
• Bursty traffic - fractals and multifractals
• Non-linear forecasting
• Conclusions

Linear Forecasting
Forecasting

"Prediction is very difficult, especially about the future." - Nils Bohr

http://www.hfac.uh.edu/MediaFutures/thoughts.html

Outline

• Motivation
• ...
• Linear Forecasting
 – Auto-regression: Least Squares, RLS
 – Co-evolving time sequences
 – Examples
 – Conclusions

Reference

(Describes MUSCLES and Recursive Least Squares)
Problem #2: Forecast

- Example: give \(x_{t-1}, x_{t-2}, \ldots\), forecast \(x_t\)

Forecasting: Preprocessing

MANUALLY:
- remove trends
- spot periodicities

Problem #2: Forecast

- Solution: try to express \(x_t\) as a linear function of the past: \(x_{t-2}, x_{t-2}, \ldots\)
 (up to a window of \(w\))

Formally:

\[x_t \approx a_1 x_{t-1} + \ldots + a_w x_{t-w} + \text{noise} \]
(Problem: Back-cast; interpolate)

- Solution - interpolate: try to express
 \[x_t \]
 as a linear function of the past AND the future:
 \[x_{t-1}, x_{t-2}, \ldots, x_{t-w_{\text{past}}}, x_{t+1}, x_{t+2}, \ldots, x_{t+w_{\text{future}}} \]
 (up to windows of \(w_{\text{past}}, w_{\text{future}} \))
- EXACTLY the same algo's

Linear Regression: idea

- express what we don’t know (= ‘dependent variable’)
- as a linear function of what we know (= ‘indep. variable(s)’)

Linear Auto Regression:
Linear Auto Regression:

- **lag** $w=1$
- **Dependent** variable = # of packets sent ($S[t]$)
- **Independent** variable = # of packets sent ($S[t-1]$)

Outline

- Motivation
- ...
- Linear Forecasting
 - Auto-regression: Least Squares; RLS
 - Co-evolving time sequences
 - Examples
 - Conclusions

More details:

- Q1: Can it work with window $w>1$?
- A1: YES!
More details:

• Q1: Can it work with window \(w > 1? \)

 • A1: YES! (we’ll fit a hyper-plane, then!)

\[x_{t-2} \quad x_{t-1} \quad x_t \]

More details:

• Q1: Can it work with window \(w > 1? \)

 • A1: YES! (we’ll fit a hyper-plane, then!)

[Diagram]

More details:

• Q1: Can it work with window \(w > 1? \)

 • A1: YES! The problem becomes:

\[X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]} \]

• OVER-CONSTRAINED

 – \(a \) is the vector of the regression coefficients

 – \(X \) has the \(N \) values of the \(w \) indep. variables

 – \(y \) has the \(N \) values of the dependent variable
More details:

1. \(X_{[N \times w]} \times a_{[w \times 1]} = y_{[N \times 1]} \)

 \[
 \begin{bmatrix}
 X_{11}, X_{12}, \ldots, X_{1w} \\
 X_{21}, X_{22}, \ldots, X_{2w} \\
 \vdots \\
 X_{N1}, X_{N2}, \ldots, X_{Nw}
 \end{bmatrix}
 \begin{bmatrix}
 a_1 \\
 a_2 \\
 \vdots \\
 a_w
 \end{bmatrix}
 =
 \begin{bmatrix}
 y_1 \\
 y_2 \\
 \vdots \\
 y_N
 \end{bmatrix}
 \]

More details:

Q2: How to estimate \(a_1, a_2, \ldots, a_w = a \)?

A2: with Least Squares fit

\[
\hat{a} = (X^T \times X)^{-1} \times (X^T \times y)
\]

(Moore-Penrose pseudo-inverse)

\(a \) is the vector that minimizes the RMSE from \(y \)

<identical math with ‘query feedbacks’>
More details

- Straightforward solution:
 \[\mathbf{a} = (\mathbf{X}^T \times \mathbf{X})^{-1} \times (\mathbf{X}^T \times \mathbf{y}) \]

- Observations:
 - Sample matrix \(\mathbf{X} \) grows over time
 - Needs matrix inversion
 - \(O(Nw^2) \) computation
 - \(O(Nw) \) storage

Even more details

- Q3: Can we estimate \(\mathbf{a} \) incrementally?
- A3: Yes, with the brilliant, classic method of ‘Recursive Least Squares’ (RLS) (see, e.g., [Yi+00], for details).

- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)

Even more details

- Q3: Can we estimate \(\mathbf{a} \) incrementally?
- A3: Yes, with the brilliant, classic method of ‘Recursive Least Squares’ (RLS) (see, e.g., [Yi+00], for details).
- We can do the matrix inversion, WITHOUT inversion! (How is that possible?!)
- A: our matrix has special form: \((\mathbf{X}^T \mathbf{X}) \)
At the $N+1$ time tick:

\[\begin{bmatrix} x_{N}^T \\ x_{N+1} \end{bmatrix} \]

More details

- Let $G_N = (X_N^T \times X_N)^{-1}$ ("gain matrix")
- G_{N+1} can be computed recursively from G_N

\[G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}^T] \times x_{N+1} \times G_N \]

\[c = [1 + x_{N+1}^T \times G_N \times x_{N+1}] \]

EVEN more details:

Let’s elaborate

(VERY IMPORTANT, VERY VALUABLE!)
EVEN more details:

$$a = (X_{N+1}^T \times X_{N+1})^{-1} \times (X_{N+1}^T \times y_{N+1})$$

\[\begin{array}{ccc}
[w \times 1] & [(N+1) \times w] & [(N+1) \times 1] \\
\end{array}\]

\[\begin{array}{ccc}
[w \times (N+1)] & [w \times (N+1)] \\
\end{array}\]
EVEN more details:

\[a = [X_{N+1}^T \times X_{N+1}]^{-1} \times [X_{N+1}^T \times y_{N+1}] \]

'gain matrix' \[G_{N+1} = [X_{N+1}^T \times X_{N+1}]^{-1} \]
\[G_{N+1} = G_n - [c]^{-1} \times [G_n \times x_{N+1}^T \times x_{N+1} \times G_n] \]
\[c = [1 + x_{N+1} \times G_n \times x_{N+1}^T] \]

EVEN more details:

\[G_{N+1} = G_n - [c]^{-1} \times [G_n \times x_{N+1}^T \times x_{N+1} \times G_n] \]
\[c = [1 + x_{N+1} \times G_n \times x_{N+1}^T] \]

EVEN more details:

\[\text{SCALAR!} \]
\[c = [1 + x_{N+1} \times G_n \times x_{N+1}^T] \]
Altogether:

\[a = \left[X_{N+1} \right]^T \times X_{N+1}^{-1} \times \left[X_{N+1} \right]^T \times y_{N+1} \]

\[G_{N+1} = \left[X_{N+1} \right]^T \times X_{N+1}^{-1} \]

\[G_{N+1} = G_N - [c]^{-1} \times [G_N \times x_{N+1}] \times x_{N+1} \times G_N \]

\[c = \left[1 + x_{N+1} \times G_N \times x_{N+1} \right]^T \]

Comparison:

- **Straightforward Least Squares**
 - Needs huge matrix (growing in size) \(O(N^2w) \)
 - Costly matrix operation \(O(N^2w^2) \)

- **Recursive LS**
 - Need much smaller, fixed size matrix \(O(w \times w) \)
 - Fast, incremental computation \(O(1 \times w^2) \)
 - no matrix inversion

\[N = 10^6, \quad w = 1-100 \]
Pictorially:

- Given:

Independent Variable

Dependent Variable

Pictorially:

new point

Pictorially:

RLS: quickly compute new best fit

new point
Even more details

- Q4: can we ‘forget’ the older samples?
- A4: Yes - RLS can easily handle that [Yi+00]:

Adaptability - ‘forgetting’

- Independent Variable: eg., packets sent
- Dependent Variable: eg., bytes sent

Trend change

- (R)LS with no forgetting
Adaptability - ‘forgetting’

- RLS: can *trivially* handle ‘forgetting’

How to choose ‘w’?

- goal: capture arbitrary periodicities
- with NO human intervention
- on a semi-infinite stream

Reference

Answer:

- ‘AWSOM’ (Arbitrary Window Stream fOrecasting Method) [Papadimitriou+, vldb2003]
- idea: do AR on each wavelet level
- in detail:
AWSOM - idea

\[W_{l,t} = \beta_{l,1} W_{l,t-1} + \beta_{l,2} W_{l,t-2} + \ldots \]

\[W_{l',t'} = \beta_{l',1} W_{l',t'-1} + \beta_{l',2} W_{l',t'-2} + \ldots \]

More details...

- Update of wavelet coefficients (incremental)
- Update of linear models (incremental; RLS)
- Feature selection (single-pass)
 - Not all correlations are significant
 - Throw away the insignificant ones ("noise")

Results - Synthetic data

- Triangle pulse
- Mix (sine + square)
- AR captures wrong trend (or none)
- Seasonal AR estimation fails
Results - Real data

• Automobile traffic
 – Daily periodicity
 – Bursty “noise” at smaller scales
• AR fails to capture any trend
• Seasonal AR estimation fails

Results - Real data

• Sunspot intensity
 – Slightly time-varying “period”
• AR captures wrong trend
• Seasonal ARIMA
 – wrong downward trend, despite help by human!

Complexity

• Model update
 Space: $O(\lg N + mk^2) \sim O(\lg N)$
 Time: $O(k^2) \sim O(1)$
• Where
 – N: number of points (so far)
 – k: number of regression coefficients; fixed
 – m: number of linear models; $O(\lg N)$
Outline

• Motivation
• ...
• Linear Forecasting
 – Auto-regression: Least Squares; RLS
 – Co-evolving time sequences
 – Examples
 – Conclusions

Co-Evolving Time Sequences

• Given: A set of correlated time sequences
• Forecast ‘Repeated(t)’

Solution:

Q: what should we do?
Solution:

Least Squares, with

- Dep. Variable: Repeated(t)
- Indep. Variables: Sent(t-1) … Sent(t-w); Lost(t-1) … Lost(t-w); Repeated(t-1), ...
- (named: ‘MUSCLES’ [Yi+00])

Forecasting - Outline

- Auto-regression
- Least Squares; recursive least squares
- Co-evolving time sequences
- Examples
- Conclusions

Examples - Experiments

- Datasets
 - Modem pool traffic (14 modems, 1500 time-ticks; #packets per time unit)
 - AT&T WorldNet internet usage (several data streams; 980 time-ticks)
- Measures of success
 - Accuracy : Root Mean Square Error (RMSE)
Accuracy - “Modem”

MUSCLES outperforms AR & “yesterday”

Accuracy - “Internet”

MUSCLES consistently outperforms AR & “yesterday”

Linear forecasting - Outline

• Auto-regression
• Least Squares; recursive least squares
• Co-evolving time sequences
• Examples
→ Conclusions
Conclusions - Practitioner’s guide

- AR(IMA) methodology: prevailing method for linear forecasting
- Brilliant method of Recursive Least Squares for fast, incremental estimation.
- See [Box-Jenkins]
- (AWSOM: no human intervention)

Resources: software and urls

- MUSCLES: Prof. Byoung-Kee Yi:
 http://www.postech.ac.kr/~bkyi/
or christos@cs.cmu.edu
- free-ware: ‘R’ for stat. analysis
 (clone of Splus)
 http://cran.r-project.org/

Books

- George E.P. Box and Gwilym M. Jenkins and
 Gregory C. Reinsel, Time Series Analysis: Forecasting and Control, Prentice Hall, 1994 (the
 classic book on ARIMA, 3rd ed.)
- Brockwell, P. J. and R. A. Davis (1987), Time
 Verlag.
Additional Reading

- [Papadimitriou vldh2003] Spiros Papadimitriou, Anthony Brockwell and Christos Faloutsos
- [Yi+00] Byoung-Kee Yi et al.: Online Data Mining for Co-Evolving Time Sequences, ICDE 2000. (Describes MUSCLES and Recursive Least Squares)

Outline

- Motivation
- Similarity search and distance functions
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Non-linear forecasting
 - Conclusions

Bursty Traffic & Multifractals
Outline

- Motivation
- ...
- Linear Forecasting
 - Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Results

Reference:

Full thesis: CMU-CS-05-185

Recall: Problem #1:

Goal: given a signal (e.g., #bytes over time)
Find: patterns, periodicities, and/or compress

<table>
<thead>
<tr>
<th>#bytes</th>
<th>Bytes per 30'</th>
</tr>
</thead>
<tbody>
<tr>
<td>(packets per day; earthquakes per year)</td>
<td>time</td>
</tr>
</tbody>
</table>
Problem #1

- model bursty traffic
- generate realistic traces
- (Poisson does not work)

Motivation

- predict queue length distributions (e.g., to give probabilistic guarantees)
- “learn” traffic, for buffering, prefetching, ‘active disks’, web servers

Q: any ‘pattern’?

- Not Poisson
- spike; silence; more spikes; more silence…
- any rules?
Solution: self-similarity

But:

• Q1: How to generate realistic traces; extrapolate; give guarantees?
• Q2: How to estimate the model parameters?

Outline

• Motivation
• ...
• Linear Forecasting
• Bursty traffic - fractals and multifractals
 – Problem
 – Main idea (80/20, Hurst exponent)
 – Results
Approach

• Q1: How to generate a sequence, that is
 – bursty
 – self-similar
 – and has similar queue length distributions

Approach

• A: ‘binomial multifractal’ [Wang+02]
 • ~ 80-20 ‘law’:
 – 80% of bytes/queries etc on first half
 – repeat recursively
 • b: bias factor (eg., 80%)

Binary multifractals

\[20 \land 80 \]
Parameter estimation

• Q2: How to estimate the bias factor b?

A: MANY ways [Crovella+96]
 – Hurst exponent
 – variance plot
 – even DFT amplitude spectrum! (‘periodogram’)
 – More robust: ‘entropy plot’ [Wang+02]
Entropy plot

- Rationale:
 - burstiness: inverse of uniformity
 - entropy measures uniformity of a distribution
 - find entropy at several granularities, to see whether/how our distribution is close to uniform.

Entropy plot

- Entropy $E(n)$ after n levels of splits
 - $n=1$: $E(1) = -p_1 \log_2(p_1) - p_2 \log_2(p_2)$
 - $n=2$: $E(2) = -\sum \pi_{2,i} \log_2(\pi_{2,i})$
Real traffic

Entropy $E(n)$

- Has linear entropy plot (\Rightarrow self-similar)

Observation - intuition:

Entropy $E(n)$

intuition: slope = intrinsic dimensionality = info-bits per coordinate-bit
- unif. Dataset: slope =?
- multi-point: slope =?

Observation - intuition:

Entropy $E(n)$

intuition: slope = intrinsic dimensionality = info-bits per coordinate-bit
- unif. Dataset: slope =1
- multi-point: slope =0
Entropy plot - Intuition

- Slope ~ intrinsic dimensionality (in fact, ‘Information fractal dimension’)
- = info bit per coordinate bit - eg

Dim = 1

Pick a point; reveal its coordinate bit-by-bit - how much info is each bit worth to me?

Entropy plot

- Slope ~ intrinsic dimensionality (in fact, ‘Information fractal dimension’)
- = info bit per coordinate bit - eg

Dim = 1

Is MSB 0?

‘info’ value = E(1): 1 bit

Is next MSB = 0?
Entropy plot

• Slope \sim intrinsic dimensionality (in fact, ‘Information fractal dimension’)
• = info bit per coordinate bit - eg

Dim = 1

Info value = 1 bit
= \text{E}(2) - \text{E}(1) = \\
\text{Is MSB 0?}
\text{Is next MSB =0?}

\text{Dim=0}

Entropy plot

• Repeat, for all points at same position:

\text{Dim=0}

Entropy plot

• Repeat, for all points at same position:
 • we need 0 bits of info, to determine position
 • \Rightarrow slope = 0 = intrinsic dimensionality

\text{Dim=0}
Entropy plot

• Real (and 80-20) datasets can be in-between: bursts, gaps, smaller bursts, smaller gaps, at every scale

| Dim = 1 | Dim=0 | 0<Dim<1 |

(Fractals, again)

• What set of points could have behavior between point and line?

Cantor dust

• Eliminate the middle third
• Recursively!
Cantor dust

Cantor dust

Cantor dust
Cantor dust

Dimensionality?
(no length; infinite # points!)
Answer: log2 / log3 = 0.6

Some more entropy plots:

- Poisson vs real

Poisson: slope = -1 -> uniformly distributed
b-model

- b-model traffic gives perfectly linear plot
- Lemma: its slope is
 \[\text{slope} = -b \log_2 b - (1-b) \log_2 (1-b) \]
- Fitting: do entropy plot; get slope; solve for \(b \)

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
 - Problem
 - Main idea (80/20, Hurst exponent)
 - Experiments - Results

Experimental setup

- Disk traces (from HP [Wilkes 93])
- web traces from LBL
 - [Repository](http://repository.cs.vt.edu/)
 - *lbl-conn-7.tar.Z*
Model validation

- Linear entropy plots

(a) Disk Traces
(b) Web Traces

Bias factors b: 0.6-0.8
smallest b / smoothest: mntp traffic

Web traffic - results

- LBL, NCDF of queue lengths (log-log scales)

Prob(l)

(a) lbl-all
(b) lbl-nntp
(c) lbl-smtp
(d) lbl-ftp

How to give guarantees?
(queue length l)

Web traffic - results

- LBL, NCDF of queue lengths (log-log scales)

Prob(l)

20% of the requests will see queue lengths <100
(queue length l)
Conclusions

- Multifractals (80/20, ‘b-model’, Multiplicative Wavelet Model (MWM)) for analysis and synthesis of bursty traffic

Books

Further reading:

Further reading

Outline

- Motivation
- ...
- Linear Forecasting
- Bursty traffic - fractals and multifractals
- Non-linear forecasting
- Conclusions

Chaos and non-linear forecasting
Reference:

[Deepay Chakrabarti and Christos Faloutsos
F4: Large-Scale Automated Forecasting using Fractals CIKM 2002, Washington DC, Nov. 2002.]

Detailed Outline

• Non-linear forecasting
 – Problem
 – Idea
 – How-to
 – Experiments
 – Conclusions

Recall: Problem #1

Given a time series \{x_t\}, predict its future course, that is, \(x_{t+1}, x_{t+2}, \ldots\)
Datasets

Logistic Parabola:
\[x_t = ax_t(1-x_t) + \text{noise} \]
Models population of flies [R. May/1976]

How to forecast?

• ARIMA - but: linearity assumption

• ANSWER: ‘Delayed Coordinate Embedding’ = Lag Plots [Sauer92]
 ~ nearest-neighbor search, for past incidents
General Intuition (Lag Plot)

- Interpolate these…
- To get the final prediction

Lag = 1, k = 4 NN

Questions:

- Q1: How to choose lag L?
- Q2: How to choose k (the # of NN)?
- Q3: How to interpolate?
- Q4: Why should this work at all?

Q1: Choosing lag L

- Manually (16, in award winning system by [Sauer94])
Q2: Choosing number of neighbors k

- Manually (typically ~ 1-10)

Q3: How to interpolate?

How do we interpolate between the k nearest neighbors?

A3.1: Average

A3.2: Weighted average (weights drop with distance - how?)

A3.3: Using SVD - seems to perform best ([Sauer94] - first place in the Santa Fe forecasting competition)
Q4: Any theory behind it?

A4: YES!

Theoretical foundation

• Based on the ‘Takens theorem’ [Takens81]
• which says that long enough delay vectors can do prediction, even if there are unobserved variables in the dynamical system (= diff. equations)

Example: Lotka-Volterra equations

\[
\begin{align*}
\frac{dH}{dt} &= r H - a H P \\
\frac{dP}{dt} &= b H P - m P
\end{align*}
\]

H is count of prey (e.g., hare)
P is count of predators (e.g., lynx)

Suppose only P(t) is observed (t=1, 2, …).
Theoretical foundation

- But the delay vector space is a faithful reconstruction of the internal system state
- So prediction in delay vector space is as good as prediction in state space

\[P(t) \]

Detailed Outline

- Non-linear forecasting
 - Problem
 - Idea
 - How-to
 - Experiments
 - Conclusions

Datasets

Logistic Parabola:

\[x_t = ax_t(1-x_t) + \text{noise} \]

Models population of flies [R. May/1976]
Datasets

Logistic Parabola:

\[x_t = ax_{t-1}(1-x_{t-1}) + \text{noise} \]

Models population of flies [R. May/1976]

Lag-plot
ARIMA: fails

Logistic Parabola

Value

Comparison of prediction to correct values

Timesteps

Our Prediction from here

Timesteps

Value
Datasets

LORENZ: Models convection currents in the air
\[\frac{dx}{dt} = a (y - x) \]
\[\frac{dy}{dt} = x (b - z) - y \]
\[\frac{dz}{dt} = xy - cz \]
Conclusions

• Lag plots for non-linear forecasting (Takens’ theorem)
• suitable for ‘chaotic’ signals

References

References

Overall conclusions

- Similarity search: Euclidean/time-warping; feature extraction and SAMs

- Signal processing: DWT is a powerful tool
Overall conclusions

- Similarity search: Euclidean/time-warping; feature extraction and SAMs
- Signal processing: DWT is a powerful tool
- Linear Forecasting: AR (Box-Jenkins) methodology; AWSOM
- Bursty traffic: multifractals (80-20 ‘law’)
- Non-linear forecasting: lag-plots (Takens)