15-826: Multimedia Databases and Data Mining

Lecture #10: Fractals - case studies - I

C. Faloutsos

Must-read Material

• Christos Faloutsos and Ibrahim Kamel, Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

Optional Material

Optional, but very useful: Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991 (on reserve in the WeH library)
Reminder

• Code at
 www.cs.cmu.edu/~christos/SRC/fdnq_h.zip

Also, in ‘R’
> library(fdim);

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
 • Data Mining

Indexing - Detailed outline

• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
 – z-ordering
 – R-trees
 – misc
• fractals
 – intro
 – applications
• text
Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - selectivity in M-trees
 - dim. curse revisited
 - "fat fractals"
 - quad-tree analysis [Gaede+]

(Fractals mentioned before:)

- for performance analysis of R-trees
- fractals for dim. reduction

Case study#1: R-tree performance

Problem
- Given
 - N points in E-dim space
- Estimate # disk accesses for a range query
 \((q_1 \times ... \times q_E)\)

(assume: ‘good’ R-tree, with tight, cube-like MBRs)
Case study#1: R-tree performance

Problem
• Given
 – N points in E-dim space
 – with fractal dimension D
• Estimate # disk accesses for a range query
 \((q_1 \times \ldots \times q_E)\)

(assume: ‘good’ R-tree, with tight, cube-like MBRs)
Typically, in DB Q-opt: uniformity + independence

Examples: World’s countries

• BUT: area vs population for ~200 countries

<table>
<thead>
<tr>
<th>pop</th>
<th>log(pop)</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>log(area)</td>
</tr>
</tbody>
</table>

• neither uniform, nor independent!
For fun: identification

- Highest density
- Lowest density
- 47 residents(!)
For fun: identification

Examples: TIGER files
- neither uniform, nor independent!

MG county, LB county

How to proceed?
- recall the $[\text{Pagel}+]$ formula, for range queries of size $q_1 \times q_2$

$$\text{DiskAccesses}(q_1, q_2) = \text{sum}(x_{i,1} + q_1) \times (x_{i,2} + q_2)$$

But:
formula needs to know the x_{ij} sizes of MBRs!
How to proceed?

But:
formula needs to know the $x_{i,j}$ sizes of MBRs!

Answer (jumping ahead):

$$s = \left(\frac{C}{N}\right)^{1/D0}$$

Let’s see the rationale

$$s = \left(\frac{C}{N}\right)^{1/D0}$$
R-trees - performance analysis

I.e: for range queries - how many disk accesses, if we just now that we have
- \(N\) points in \(E\)-d space?
A: can not tell! need to know distribution

R-trees - performance analysis

Q: OK - so we are told that the Hausdorff fractal dim. = \(D_0\) - Next step?
(also know that there are at most \(C\) points per page)

\(D_0=1\)
\(D_0=2\)

R-trees - performance analysis

Assumption 1: square-like parents (s*s)
Assumption 2: fully packed (C points each)
Assumption 3: non-overlapping

\(D_0=1\)
\(D_0=2\)
\(s_1=s_2=s\)
R-trees - performance analysis

Assumption 1: square-like parents (s*s)
Assumption 2: fully packed (N/C non-empty)
Assumption 3: non-overlapping

\[D_0 = 1 \]

\[s_1 = s_2 = s \]

R-trees - performance analysis

Hint: dfn of Hausdorff f.d.:

Felix Hausdorff (1868-1942)

Reminder:
Hausdorff or box-counting fd:

- Box counting plot: \(\log(N(r)) \) vs \(\log(r) \)
- \(r \): grid side
- \(N(r) \): count of non-empty cells
- (Hausdorff) fractal dimension \(D_0 \):

\[
D_0 = -\frac{\partial \log(N(r))}{\partial \log(r)}
\]
Reminder

- Hausdorff fd:

\[r \rightarrow \log(\#\text{non-empty cells}) \]

\[\log r \]

\[\log(N/C) \]

D_0

Proof

Reminder

- dfn of Hausdorff fd implies that

\[N(r) \sim r^{-D_0} \]

non-empty cells of side r

R-trees - performance analysis

Q (rephrased): what is the side s1, s2, ... of parent nodes, given N data points, packed by C, with f.d. = D0

D0=1

D0=2
R-trees - performance analysis

Q (rephrased): what is the side s1, s2, ... of parent nodes, given N data points, packed by C, with f.d. = D0

D0=1

D0=2

s2

s1

A: (educated guess)
- s=s1=s2 (= ...) - square-like MBRs
- N/C non-empty cells = K * s(-D0)

log(#cells)

log(s)
R-trees - performance analysis

Details of derivations: in [PODS 94].
Finally, expected side s of parent MBRs:

$$s = \frac{(C/N)^{1/D_0}}{}$$

Q: sanity check: how does s change with D_0?
A:

Q: does it make sense?
Q: does it suffer from (intrinsic) dim. curse?

Q: Final-final formula (# disk accesses for range queries $q_1 \times q_2 \times ...$):
A:
R-trees - performance analysis

Q: Final-final formula (# disk accesses for range queries \(q_1 \times q_2 \times \ldots \)):
A: # of parent-node accesses:
\[\frac{N}{C} \times (s + q_1) \times (s + q_2) \times \ldots \times (s + q_E) \]
A: # of grand-parent node accesses
\[\frac{N}{C^2} \times (s' + q_1) \times (s' + q_2) \times \ldots \times (s' + q_E) \]

\(s' = \frac{C^2}{N} \)}
R-trees - performance analysis

Results:
IUE (x-y star coordinates)

leaf accesses

query side

R-trees - performance analysis

Results:
LB County

leaf accesses

query side

R-trees - performance analysis

Results:
MG-county

leaf accesses

query side
R-trees - performance analysis

Results: 2D-uniform

leaf accesses

query side

Conclusions: usually, <5% relative error, for range queries

Indexing - Detailed outline

- fractals
 - intro
 - applications
 - disk accesses for R-trees (range queries)
 - dimensionality reduction
 - selectivity in M-trees
 - dim. curse revisited
 - “fat fractals”
 - quad-tree analysis [Gaede+]
 - ...

Optional
Case study #2: Dim. reduction

Problem definition: ‘Feature selection’
• given \(N \) points, with \(E \) dimensions
• keep the \(k \) most ‘informative’ dimensions
[Traina+,SBBD’00]

Dim. reduction - w/ fractals

not informative

Dim. reduction

Problem definition: ‘Feature selection’
• given \(N \) points, with \(E \) dimensions
• keep the \(k \) most ‘informative’ dimensions

Re-phrased: spot and drop attributes with strong (non-)linear correlations

Q: how do we do that?
A hint on correlated attributes not affecting intrinsic/fractal dimensions:

\[y = f(x, z, w) \]

we can drop \(y \)

(hence, ‘partial fd’ (PFD) of a set of attributes = the fd of the dataset, when projected on those attributes)

Dim. reduction - w/ fractals

\[\text{global FD=1} \]
\[\text{PFD=1} \]

(c) Spike

PFD=0

Dim. reduction - w/ fractals

\[\text{global FD=1} \]
\[\text{PFD=1} \]

(b) Line

PFD=1
Dim. reduction - w/ fractals

- (problem: given N points in E-d, choose k best dimensions)
- Q: Algorithm?

• Q: Algorithm?
• A: e.g., greedy - forward selection:
 – keep the attribute with highest partial fd
 – add the one that causes the highest increase in pfd
 – etc., until we are within epsilon from the full f.d.
Dim. reduction - w/ fractals

- (backward elimination: ~ reverse)
 - drop the attribute with least impact on the p.f.d.
 - repeat
 - until we are \(\epsilon \) below the full f.d.

Q: what is the smallest # of attributes we should keep?

Q: what is the smallest # of attributes we should keep?

A: we should keep at least as many as the f.d. (and probably, a few more)
Dim. reduction - w/ fractals

- Results: E.g., on the ‘currency’ dataset
- (daily exchange rates for USD, HKD, BP, FRF, DEM, JPY - i.e., 6-d vectors, one per day - base currency: CAD)

\[\text{e.g.: FRF USD} \]

E.g., on the ‘currency’ dataset

\[\log(\#\text{pairs}(\leq r)) \quad \text{correlation integral} \]

E.g., on the ‘currency’ dataset

Optional
Dim. reduction - w/ fractals

Conclusion:
• can do non-linear dim. reduction

References