15-826: Multimedia Databases and Data Mining

Lecture #8: Spatial Access Methods - V
Metric trees

C. Faloutsos

Must-read material

• Textbook, Chapter 5
• Roberto F. Santos Filho, Agma Traina, Caetano Traina Jr., and Christos Faloutsos: Similarity search without tears: the OMNI family of all-purpose access methods ICDE, Heidelberg, Germany, April 2-6 2001. (code at www.cs.cmu.edu/~christos/SRC/OmniUsrKit.tar.gz

Outline

Goal: ‘Find similar / interesting things’
• Intro to DB
• Indexing - similarity search
• Data Mining
Indexing - Detailed outline

• primary key indexing
• secondary key / multi-key indexing
• spatial access methods
 – problem dfn
 – z-ordering
 – R-trees
 – misc
• fractals
• text

SAMs - Detailed outline

• spatial access methods
 – problem dfn
 – z-ordering
 – R-trees
 – misc topics
 • grid files
 • dimensionality curse; dim. reduction
 • metric trees
• fractals
• text, ...

Metric trees

• What if we only have a distance function d(o1, o2)?
• (Applications?)
Metric trees

• (assumption: \(d() \) is a metric: positive; symmetric; triangle inequality)
• then, we can use some variation of ‘Vantage Point’ trees [Yannilos]
• many variations (GNAT trees [Brin95], MVP-trees [Ozsoyoglu+] ...)

Finally: M-trees [Ciaccia, Patella, Zezula, vldb 97]

• M-trees = ‘ball-trees’: groups in spheres
Metric trees

• Search (range and k-nn): like R-trees
• Split?

• Search (range and k-nn): like R-trees
• Split? Several criteria:
 – minimize max radius (or sum radii)
 – (even: random!)
• Algorithm?

• Search (range and k-nn): like R-trees
• Split? Several criteria:
 – minimize max radius (or sum radii)
 – (even: random!)
• Algorithm?
 • eg., similar to the quadratic split of Guttman
Metric trees - variations

- OMNI tree [Filho+, ICDE2001]

Metric trees - OMNI trees

- How to turn objects into vectors?
 - (assume that distance computations are expensive; we need to answer range/nn queries quickly)

Metric trees - OMNI trees

- How to turn objects into vectors?
 - A: pick n ‘anchor’ objects; record the distance of each object from them -> n-d vector
Metric trees - OMNI trees

• How to turn objects into vectors?
• A: pick \(n \) ‘anchor’ objects; record the distance of each object from them -> \(n \)-d vector

we could put OMNI coordinates in R-tree (or other SAM, or even do seq. scan)
• and still answer range and nn queries! (see [Filho’01] for details)
Metric trees - OMNI trees

- Result: faster than M-trees and seq. scanning (especially if distance computations are expensive)

\[d_1 \quad d_2 \quad r \]

anchor1

anchor2

Metric trees - OMNI trees

- Q1: how to choose anchors?
- Q2: ... and how many?

Conclusions for SAMs

- z-ordering and R-trees for low-d points and regions
- M-trees & variants for metric datasets
- beware of the ‘dimensionality curse’
References

References

References