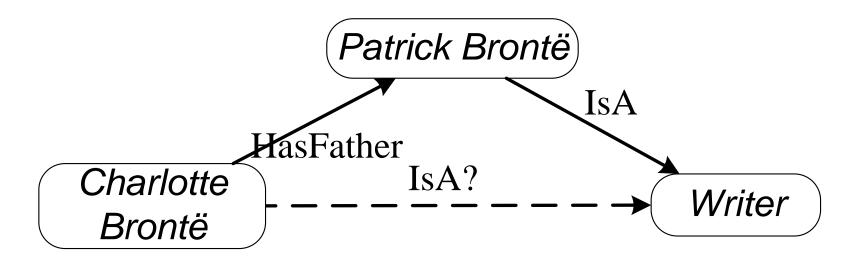
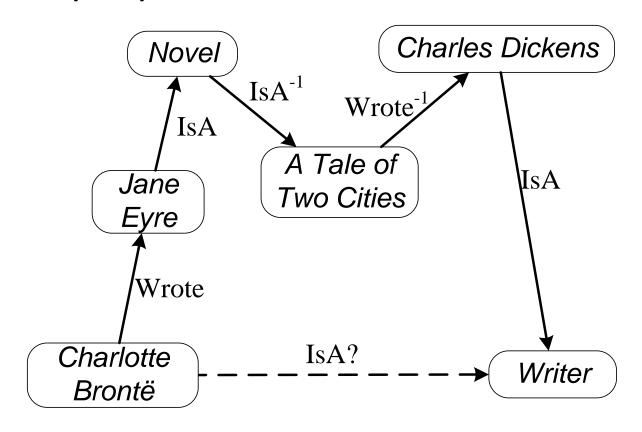
Relation Learning with Path Constrained Random Walks

Ni Lao

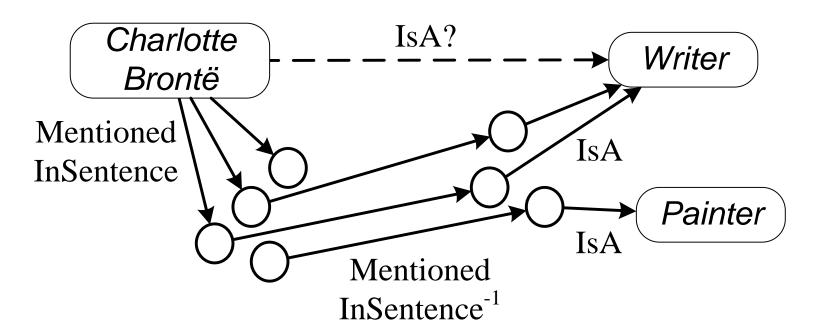
15-826 Multimedia Databases and Data Mining
School of Computer Science
Carnegie Mellon University
2011-09-27


Outline


- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)

 Prediction with rich meta-data has great potential and challenge, e.g.

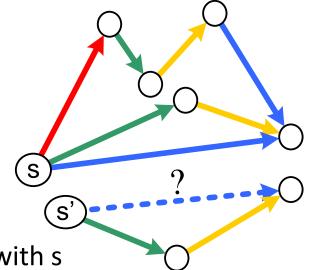
Consider friends/family



Consider people's behavior

IsA⁻¹ is the reverse of IsA relation Wrote⁻¹ is the reverse of Wrote relation

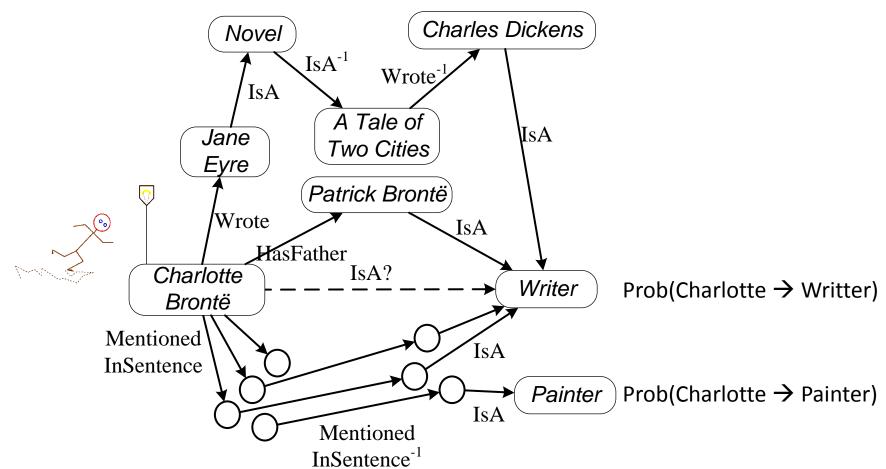
Consider literature/publication



Task

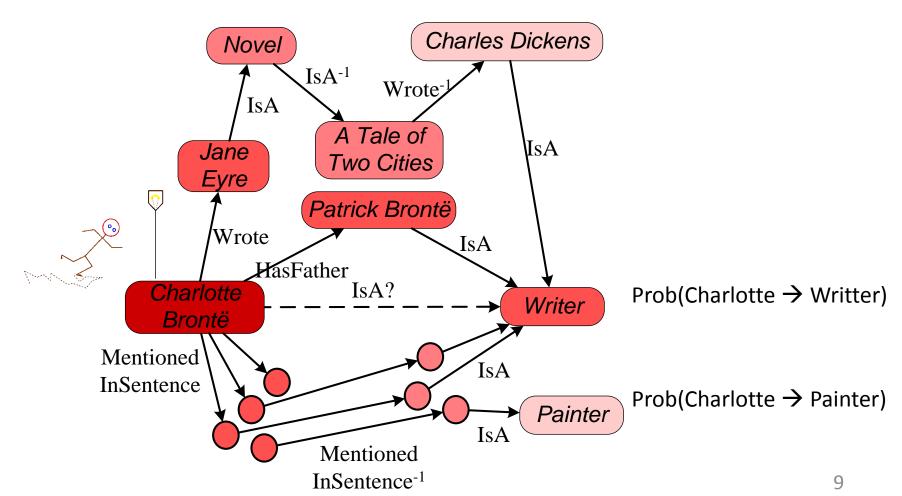
- Given
 - a directed heterogeneous graph G
 - a starting node s
 - edge type R
- Find
 - nodes t which should have edge R with s

Challenge


- statistical learning tools (e.g. SVM) expect samples and their feature values
- feature engineering needs domain knowledge and is not scalable to the complexity of nowadays' data

Why Not Random Walk with Restart

(Will be covered in later classes)

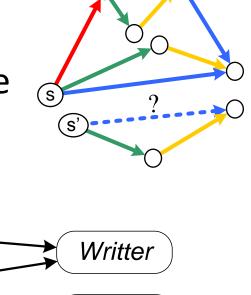

Ignores edge types

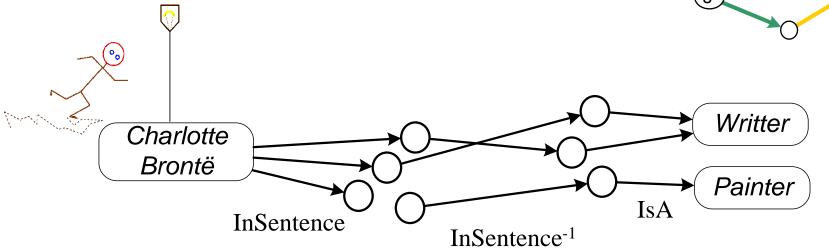
Why Not Random Walk with Restart

(Will be covered in later classes)

Ignores edge types

Why Not First Order Inductive Learner


• Learn Horn clauses in first order logic (FOIL, 1993)


```
HasFather(a, b) ^{\land} isa(b,y) \Rightarrow isa(a; y) \leftarrow A low accuracy/high recall rule Write(a, i) ^{\land} isa(i, x) ^{\land} isa(j,x) ^{\land} Write(b, j) ^{\land} isa(b,y) \Rightarrow isa(a; y) InSentence(a, j) ^{\land} InSentence(b, j) ^{\land} isa(b,y) \Rightarrow isa(a; y) HasFather(x, a) ^{\land} isa(a,writer) \Rightarrow isa(x; writer)
```

- Horn clauses are costly to discover
- Inference is generally slow
- Cannot leverage low accuracy rules
 - Can only combine rules with disjunctions

Proposed: Random Walk Inference

 Random walk following a particular edge type sequence is very indicative

Prob(Charlotte → Writer | InSentence, InSentence⁻¹, IsA)

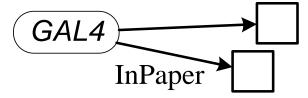
Random Walk Inference

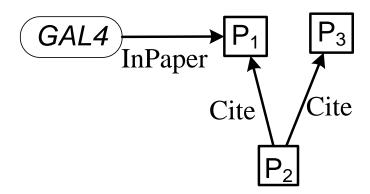
Combine features from different edge type sequences

```
Prob(Charlotte → Writer | HasFather, isa)
Prob(Charlotte → Writer | Write, isa, isa-1, Write, isa)
Prob(Charlotte → Writer | InSentence, InSentence-1, isa)
```

- More expressive than random walk with restart
- More efficient and robust than FOIL

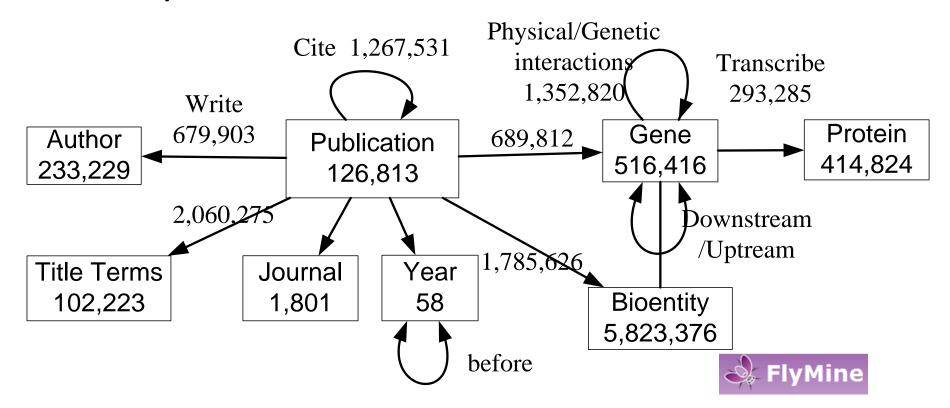
Outline


- Motivation
 - Relational Learning
 - Random Walk Inference


- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)

Recommendation Tasks with Biology Literature Data

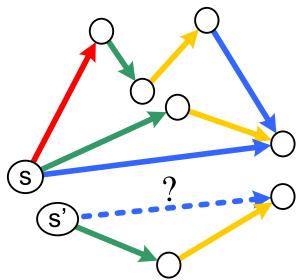
- Problem
 - Given a topic e.g. "GAL4"
 - Which papers should I read?
- A simple retrieval approach (e.g. search engine)



Random walk inference find paths such as

Data sets

- Yeast: 0.2M nodes, 5.5M links
- Fly: 0.8M nodes, 3.5M links


Experiment Setup

- Tasks
 - Gene recommendation: author, year → gene
 - Venue recommendation: genes, title words → journal
 - Reference recommendation: title words, year → paper
 - Expert-finding: title words, genes → author
- Data split
 - 2000 training, 2000 tuning, 2000 test

The NELL Knowledge Base

- Never-Ending Language Learning:
 - "a never-ending learning system that operates 24 hours per day, for years, to continuously improve its ability to read (extract structured facts from) the web" (Carlson et al., 2010
- Task:
 - Given
 - a knowledge base G
 - a starting node s
 - edge type R
 - Find
 - nodes t which should have edge R with s

e.g. IsA(Charlotte Brontë,?)

Experiment Setup

- We consider 96 relations for which NELL database has more than 100 instances
- Closed world assumption for training
 - The nodes y known to satisfy R(x; ?) are treated as positive examples
 - All other nodes are treated as negative examples
 - E.g.

```
Training
IsA(Charles Dickens, writter) → true
IsA(Charles Dickens, painter) → false
```

• • •

Testing IsA(Charlotte Brontë, ??)

Outline

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base

- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)

details

Path Ranking Algorithm (PRA)

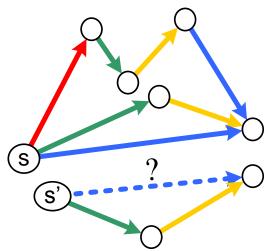
(Lao & Cohen, ECML 2010)

- A relation path $P=(R_1, ..., R_n)$ is a sequence of relations
- A PRA model scores a source-target pair by a linear function of their path features

$$score(s,t) = \sum_{P \in \mathbf{P}} \operatorname{Prob}(s \to t; P)\theta_P$$

- **P** is the set of all relation paths with length $\leq L$
- E.g. IsA(Charlotte, ???)

Prob(Charlotte → Writer | HasFather, isa)

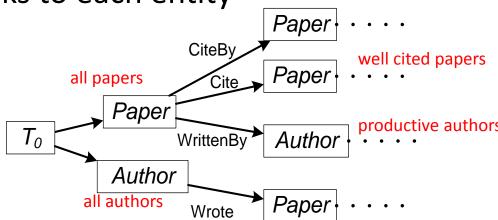

Prob(Charlotte → Writer | Write, isa, isa-1, Write, isa)

Prob(Charlotte → Writer | InSentence, InSentence⁻¹, isa)

details

Training

- For a relation R and a set of node pairs {(s_i, t_i)}, construct a training dataset D ={(x_i, y_i)}
 - $-x_i$ is a vector of all the path features for (s_i, t_i)
 - $-y_i$ indicates whether $R(s_i, t_i)$ is true or not
 - e.g. $s_i \rightarrow$ Charlotte, $t_i \rightarrow$ painter/writer
- θ is estimated using classifier
 - L1,L2-regularized logistic regression



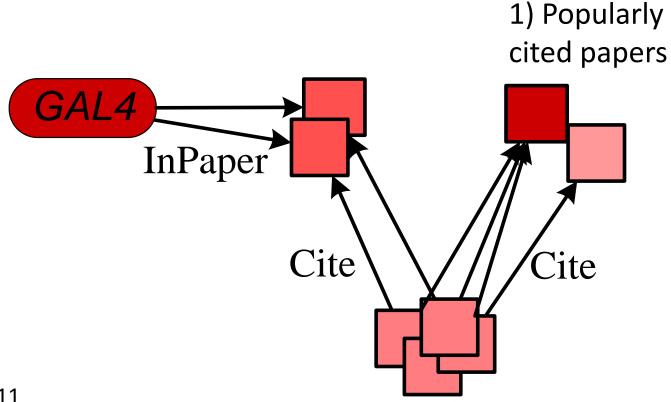
more details

Extension 1: Query Independent Paths

- PageRank
 - assign an query independent score to each web page
 - later combined with query dependent score
- Generalize to multiple relation types
 - a special entity e_0 of special type T_0
 - T₀ has relation to all other entity types

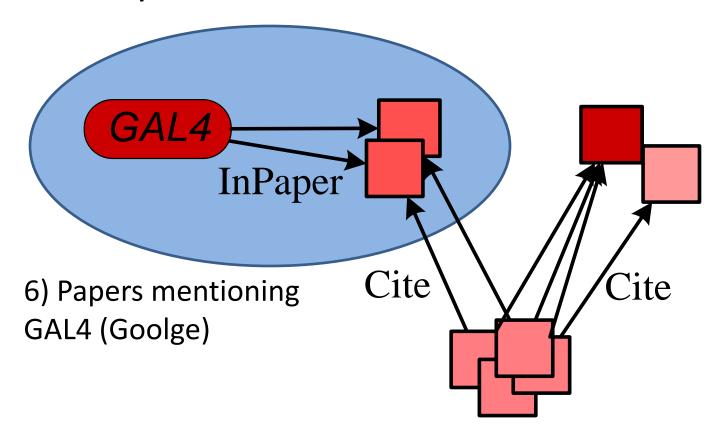
 $-e_0$ has links to each entity

more details


Extension 2: Popular Entity Biases

- Node specific characteristics which cannot be captured by a general model
 - E.g. Certain genes have well known mile stone papers
 - E.g. Different users may have different intentions for the same query
- For a task with query type T, and target type T
 - Introduce a bias θ_e for each entity e of type T
 - Introduce a bias $\theta_{e',e}$ for each entity pair (e',e) where e is of type T and e' of type T'

 A PRA+qip+pop model trained for reference recommendation task on the yeast data


	337 • 1 4	
$\overline{\mathrm{ID}}$	\mathbf{Weight}	Feature
1	272.4	$word \rightarrow paper \xrightarrow{Cite^{-1}} paper \xrightarrow{Cite} paper$ 1) papers which are cited together
2		$word \rightarrow paper \xrightarrow{Cite} paper$ with papers of this tonic
3		$gene \rightarrow paper \xrightarrow{Cite} paper \xrightarrow{Cite} paper$
4		$word \rightarrow paper \xrightarrow{Cite^{-1}} paper$
5	50.2	$gene \rightarrow paper \xrightarrow{Cite} paper$ 6) simple retrieval stratigy
6		$word \rightarrow paper$ 7,8) papers cited during
7	29.3	$year \rightarrow paper \xrightarrow{\longrightarrow} paper$
8	13.0	$year \xrightarrow{Before^{-1}} year \rightarrow paper \xrightarrow{Cite} paper$ the past two years
		O) well sited papers
9	3.7	$T^* \rightarrow paper \xrightarrow{Cite} paper$ 9) well cited papers
10	2.9	GAL4>Nature. 1988. GAL4-VP16 is an unusually potent transcriptional activator.
11	2.1	CYC1>Cell. 1979. Sequence of the gene for iso-1-cytochrome c in Saccharomyces cerevisiae.
		10,11) mile stone papers about
12	-5.4	$year \xrightarrow{Before^{-1}} year \rightarrow paper$ specific query terms/genes
13	-39.1	$year \rightarrow paper$
14	-49.0	$T^* \rightarrow year \rightarrow paper$ 14) old papers

 Papers which are cited together with papers of this topic

9/22/2011

 Papers which are cited together with papers of this topic

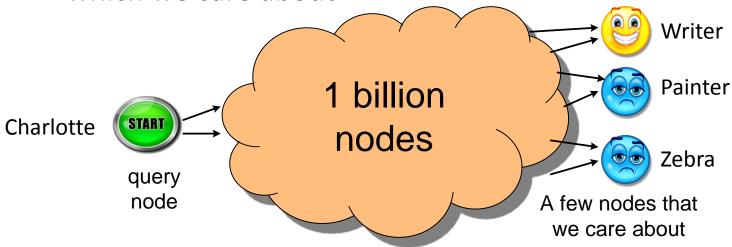
Experiment Result

- Compare the MAP of PCRW to
 - Random Walk with Restart (RWR)
 - query independent paths (qip)
 - popular entity biases (pop)

Corpus	Task	RWR		PI	RA	
		trained	trained	+qip	+pop	+qip+pop
yeast	Ven	44.2	45.7 (+3.4)	46.4 (+5.0)	48.7 (+10.2)	49.3 (+11.5)
yeast	Ref	16.0	16.9 (+5.6)	18.3 (+14.4)	19.1 (+19.4)	19.8 (+23.8)
yeast	Exp	11.1	11.9 (+7.2)	12.4 (+11.7)	12.5(+12.6)	12.9 (+16.2)
yeast	Gen	14.4	14.9 (+3.5)	15.1 (+4.9)	15.1 (+4.9)	$15.3 \ (+6.3)$
fly	Ven	48.3	50.4 (+4.3)	$51.1 \ (+5.8)$	50.7 (+5.0)	51.7 (+7.0)
fly	Ref	20.5	$20.8 (^{\dagger} + 1.5)$	$21.0 \ (+2.4)$	$21.6 \ (+5.4)$	21.7 (+5.9)
fly	Exp	7.2	$7.6 (^{\dagger} + 5.6)$	8.3 (+15.3)	7.9 (+9.7)	8.5 (+18.1)
fly	Gen	19.2	20.7 (+7.8)	21.1 (+9.9)	21.1 (+9.9)	21.0 (+9.4)

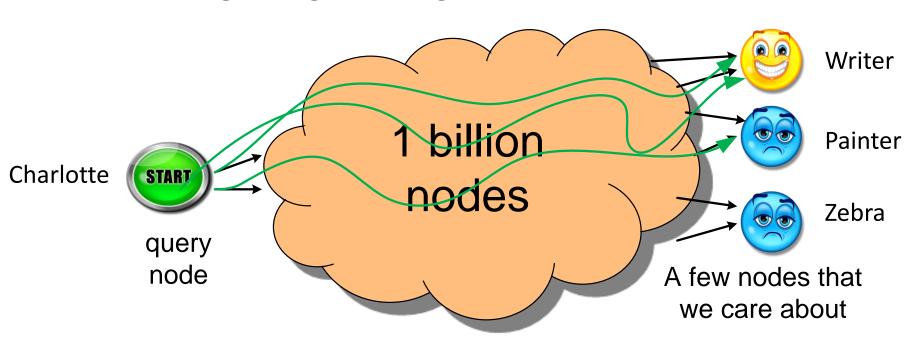
Outline

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases

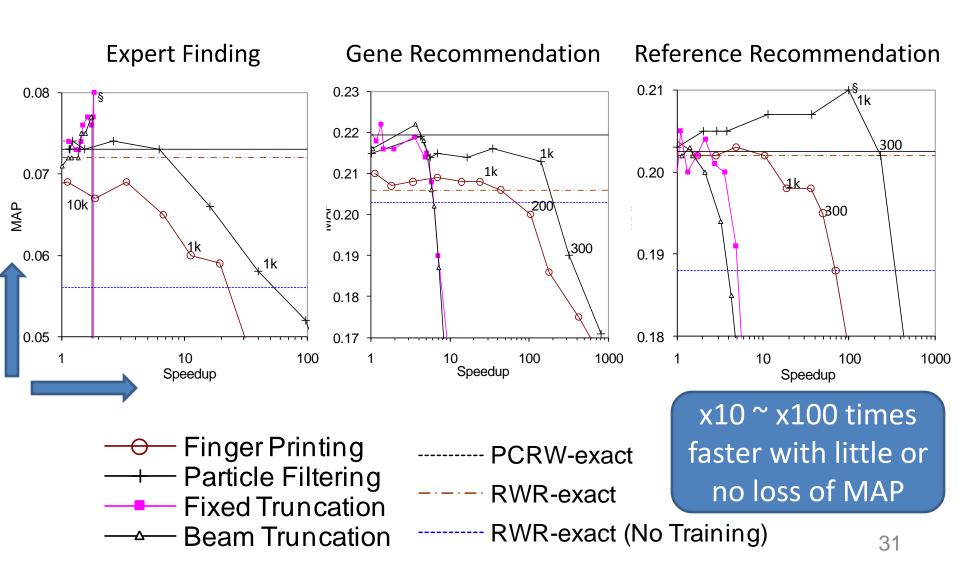


- Efficient Inference (Lao & Cohen, KDD 2010)
- Feature Selection (L. M. C., EMNLP 2011)

Efficient Inference


(Lao & Cohen, KDD 2010)

- Problem
 - Exact calculation of random walk distributions results in non-zero probabilities for many internal nodes in the graph
- Goal
 - Computation should be focused on the few target nodes which we care about



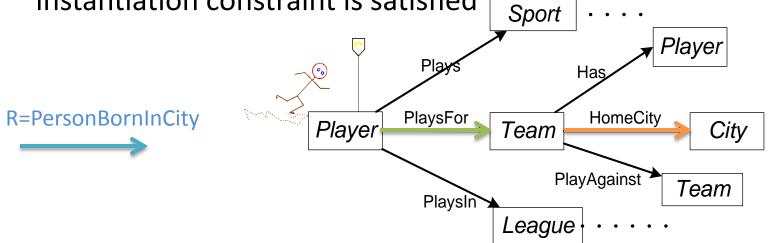
Efficient Inference

- Proposed Approach: Sampling
 - A few random walkers (or particles) are enough to distinguish good target nodes from bad ones

Results on the Fly Data

Outline

- Motivation
 - Relational Learning
 - Random Walk Inference
- Tasks
 - Publication recommendation tasks
 - Inference with knowledge base
- Path Ranking Algorithm (Lao & Cohen, ECML 2010)
 - Query Independent Paths
 - Popular Entity Biases
- Efficient Inference (Lao & Cohen, KDD 2010)

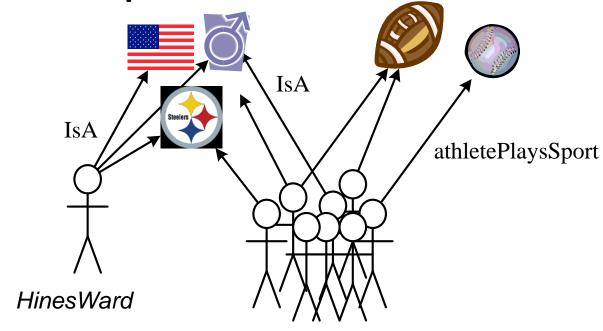

• Feature Selection (L. M. C., EMNLP 2011)

details

Path Finding & Feature Selection

(Lao, Mitchell & Cohen, EMNLP 2011)

- Impractical to enumerate all possible edge sequences O(|V|L)
- How to find potentially useful paths?
 - Constraint 1: paths to instantiate in at least K(=5) training queries
 - Constraint 2: Prob(s→t| path, s→any node) > α (=0.2)
- Depth first search up to length l:
 - starts from a set of training queries, expand a relation if the instantiation constraint is satisfied



Path Finding & Feature Selection

Dramatically reduce the number of paths

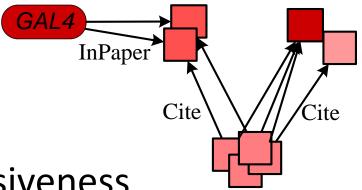
Table 1: Number of paths in PRA models of maximum path length 3 and 4. Averaged over 96 tasks.

	<i>ℓ</i> =3	<i>ℓ</i> =4
all paths up to length ℓ	15,376	1,906,624
+query support $\geq \alpha = 0.01$	522	5016
+ever reach a target entity	136	792
$+L_1$ regularization	63	271

athletePlaysSport

$$\begin{array}{c} c \xrightarrow{isa} c \xrightarrow{isa^{-1}} c \xrightarrow{athletePlaysSport} c \\ c \xrightarrow{athletePlaysInLeague} c \xrightarrow{superpartOfOrganization} c \xrightarrow{teamPlaysSport} c \end{array}$$

teamHomeStadium


Evaluation by Mechanical Turk

- Sampled evaluation
 - only evaluate the top ranked result for each query
 - evaluate precisions at top 10, 100 and 1000 queries
- 8 functional predicates
- sampled 8 non-functional predicates

Task		#Rules	p@10	p@100	p@1000
Functional Predicates	N-FOIL	2.1(+37)	0.76	0.380	0.071
Functional Predicates	PRA	43	0.79	0.668	0.615
Non-functional Predicates	PRA	92	0.65	0.620	0.615

Conclusion

- Random walk inference for relational learning
 - Efficient
 - Robust

- Future work in model expressiveness
 - Discover lexicalized paths
 - Efficiently discover long paths
 - Thank you! Questions?