
2011-09-27

1

Power Iteration Clustering

Frank Lin

15-826 Multimedia Databases and Data Mining

School of Computer Science

Carnegie Mellon University

2011-09-27

Talk Outline

• Clustering

• Spectral Clustering

• Power Iteration Clustering (PIC)

– PIC with Path Folding

– PIC Extensions

2

Clustering

• Automatic grouping of data points

• 3 example datasets:
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k-means

• A well-known clustering method

– Given: Points in Euclidean space and an integer k

– Find: k clusters determined by k centroids

– Objective: Minimize within-cluster sum of square distances
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Graph Clustering

Given: Data = Network
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A 1 1 1

B 1 1

C 1
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I 1 1 1

J 1 1

= Graph = Matrix
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Graph Clustering

Find: Partitions of the graph

Objective: Minimizes (or maximizes) an objective function according 
to a certain definition of a “balanced cut” 
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A 1 1 1 1

B 1 1

C 1

D 1 1

E 1

F 1 1 1

G 1

H 1 1

I 1 1 1 1

J 1 1

Exact Solution is 

NP-hard!

Example - Normalized Cut:
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Spectral Clustering

• Does two things:

1. Provides good polynomial-time approximation to 
the balanced graph cut problem

2. Clustering according to similarity, not Euclidean 
space

Relax solution

to take on real values, 

then compute via 

eigencomputation

Recall that 

similarity can be 

represented as a 

graph/matrix

8

Spectral Clustering

• How: Cluster data points in the space spanned 

by the “significant” eigenvectors (spectrum) of 

a [Laplacian] similarity matrix

A popular spectral 

clustering method: 

normalized cuts (NCut)

Not familiar with eigenvectors? 

Details on spectral analysis, 

eigen-vectors/values, SVD will 

all be covered extensively 6-7 

lectures later! Stay tuned!

9
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Spectral Clustering

• Results with Normalized Cuts:

☺ ☺☺
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Spectral Clustering

dataset and 

normalized 

cut results
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Spectral Clustering

• Normalized Cut algorithm (Shi & Malik 2000):

1. Choose k and similarity function s

2. Derive A from s, let W=I-D-1A, where I is the identity 

matrix and D is a diagonal square matrix Dii=Σj Aij

3. Find eigenvectors and corresponding eigenvalues of W

4. Pick the k eigenvectors of W with the 2nd to kth smallest 

corresponding eigenvalues as “significant” eigenvectors

5. Project the data points onto the space spanned by these 

vectors

6. Run k-means on the projected data points

Finding eigenvectors 

and eigenvalues of a 

matrix is still pretty 

slow in general

Can we find a similar low-

dimensional embedding for 

clustering without eigenvectors?

12
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Power Iteration Clustering

• Spectral clustering methods are nice, and a 
natural choice for graph data

• But they are rather expensive and slow

Power iteration clustering (PIC) can 

provide a similar solution at a very 

low cost (fast)!

14

The Power Iteration

• Or the power method, is a simple iterative method 
for finding the dominant eigenvector of a matrix:

tt
cWvv =

+1

W : a 

square 

matrix

vt : the 
vector at 

iteration t; 

v0 typically a 

random 

vector

c : a normalizing 

constant to keep vt

from getting too large 

or too small

Typically 

converges quickly; 

fairly efficient if W

is a sparse matrix

15



2011-09-27

6

The Power Iteration

• Or the power method, is a simple iterative method 
for finding the dominant eigenvector of a matrix:

tt
cWvv =

+1

What if we let W=D-1A

(like Normalized Cut)?

16

Row-

normalized 

similarity 

matrix

The Power Iteration

17

Power Iteration Clustering

• The 2nd to kth eigenvectors of W=D-1A are 
roughly piece-wise constant with respect to 

the underlying clusters, each separating a 
cluster from the rest of the data

• The linear combination of piece-wise constant 
vectors is also piece-wise constant!

18
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Spectral Clustering

dataset and 

normalized 

cut results

2nd smallest 
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Power Iteration Clustering

dataset and 

PIC results

vt

we just need the clusters to be 

separated in some space.

Key idea: to do clustering, we may not need 

all the information in a full spectral 

embedding (e.g., distance between clusters 

in a k-dimension eigenspace)
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When to Stop
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Then:

Because they are raised 

to the power t, the 

eigenvalue ratios 

determines how fast v

converges to e1

At the beginning, v changes fast 

(“accelerating”) to converge 

locally due to “noise terms” 

(k+1…n) with small λ

When “noise terms” have gone to zero, v 

changes slowly (“constant speed”) because 

only larger λ terms (2…k) are left, where the 

eigenvalue ratios are close to 1

Details

22

Power Iteration Clustering

• A basic power iteration clustering (PIC) algorithm:

Input: A row-normalized affinity matrix W and the number of clusters k

Output: Clusters C1, C2, …, Ck

1. Pick an initial vector v0

2. Repeat

• Set vt+1 ← Wvt

• Set δt+1 ← |vt+1 – vt|

• Increment t

• Stop when |δt – δt-1| ≈ 0

3. Use k-means to cluster points on vt and return clusters C1, C2, …, Ck

23

i.e., when 

acceleration is 

nearly zero

PIC Runtime

Normalized Cut
Normalized Cut, faster 

implementation

Ran out of memory 

(24GB)

24
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PIC Accuracy on Network Datasets

Upper 

triangle: 

PIC does 

better

Lower 

triangle: 

NCut or 

NJW does 

better 

25

Talk Outline

• Clustering

• Spectral Clustering

• Power Iteration Clustering (PIC)

– PIC with Path Folding

– PIC Extensions

26

Clustering Text Data

• Spectral clustering methods are nice

• We want to use them for clustering text data

(A lot of)

27
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The Problem with Text Data

• Documents are often represented as feature 

vectors of words:
The importance of a Web 

page is an inherently 

subjective matter, which 

depends on the readers…

In this paper, we present 

Google, a prototype of a 

large-scale search engine 

which makes heavy use…

You're not cool just 

because you have a lot of 

followers on twitter, get 

over yourself…

cool web search make over you

0 4 8 2 5 3

0 8 7 4 3 2

1 0 0 0 1 228

The Problem with Text Data

• Feature vectors are often sparse

• But similarity matrix is not!

cool web search make over you

0 4 8 2 5 3

0 8 7 4 3 2

1 0 0 0 1 2

Mostly zeros  - any 

document contains 

only a small fraction 

of the vocabulary

27 125 -

23 - 125

- 23 27

Mostly non-zero 

- any two 

documents are 

likely to have a 

word in common

29

The Problem with Text Data

• A similarity matrix is the input to many clustering 

methods, including spectral clustering

• Spectral clustering requires the computation of 

the eigenvectors of a similarity matrix of the data

27 125 -

23 - 125

- 23 27

In general O(n3); 

approximation 

methods still not 

very fast

O(n2) time to construct

O(n2) space to store

> O(n2) time to operate on

Too 

expensive! 

Does not 

scale up to 

big 

datasets!

30
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The Problem with Text Data

• We want to use the similarity matrix for 

clustering (like spectral clustering), but:

– Without calculating eigenvectors

– Without constructing or storing the similarity 

matrix

Power Iteration 

Clustering
+ Path Folding

31

Path Folding

• A basic power iteration clustering (PIC) algorithm:

Input: A row-normalized affinity matrix W and the number of clusters k

Output: Clusters C1, C2, …, Ck

1. Pick an initial vector v0

2. Repeat

• Set vt+1 ← Wvt

• Set δt+1 ← |vt+1 – vt|

• Increment t

• Stop when |δt – δt-1| ≈ 0

3. Use k-means to cluster points on vt and return clusters C1, C2, …, Ck

Okay, we have a fast clustering 

method – but there’s the W that 

requires O(n2) storage  space and 

construction and operation time!

Key operation in PIC

Note: matrix-vector 

multiplication!
32

Path Folding

• What’s so good about matrix-vector 
multiplication?

• If we can decompose the matrix…

ttt
ABCW vvv )(

1
==

+

)))(((
1 tt

CBA vv =
+

33

• Then we arrive at the same solution doing a 

series of matrix-vector multiplications!

How could 

this be 

better?
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Path Folding

• As long as we can decompose the matrix into 
a series of sparse matrices, we can turn a 

dense matrix-vector multiplication into a 
series of sparse matrix-vector multiplications.

This means that we can turn an 

operation that requires O(n2) 

storage and runtime into one that 

requires ~O(n) storage and runtime!

This is exactly 

the case for 

text data

And many other 

kinds of data as well!
34

Path Folding

• Example – inner product similarity:

T
FFDW

1−
=

The original 

feature 

matrix

The feature 

matrix 

transposed

Diagonal matrix  

that normalizes W

so rows sum to 1

Construction: given

Storage: ~O(n)

Construction: given

Storage: just use F
Storage: ~n

35

Details

Why is it ~n 

and not n?

Path Folding

• Example – inner product similarity:

T
FFDW

1−
=

• Iteration update:

))((
11 tTt

FFD vv
−+

=

Construction: 

~O(n)

Storage:

~O(n)

Operation: 

~O(n)

Okay…how about a 

similarity function 

we actually use for 

text data?

36

Details
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Path Folding

• Example – cosine similarity:

NNFFDW
T1−

=

• Iteration update:

))))((((
11 tTt

NFFND vv
−+

=

Diagonal 

cosine 

normalizing 

matrix

Construction: 

~O(n)

Storage:

~O(n)

Operation: 

~O(n)

Compact storage: we don’t need a cosine-

normalized version of the feature vectors 37

Details

More on 

cosine 

similarity 5 or 

6 lectures 

later!

Path Folding

• We refer to this technique as path folding due 
to its connections to “folding” a bipartite 

graph into a unipartite graph.

38

Results

• An accuracy result:

Upper triangle:  

we win

Lower triangle:  

spectral 

clustering wins

Each point is 

accuracy for 

a 2-cluster 

text dataset

Diagonal: tied 

(most datasets)

39
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PIC Extension: Avoiding Collisions

• One robustness question for vanilla PIC as data 
size and complexity grows:

• How many (noisy) clusters can you fit in one 
dimension without them “colliding”?

41

Cluster signals 

cleanly separated

A little too close for 

comfort?

PIC Extension: Avoiding Collisions

• A solution:

Run PIC d times with different random starts and 

construct a d-dimension embedding

• Unlikely two clusters collide on all d dimensions

• We can afford it because PIC is fast and space-

efficient!

42
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PIC Extension: Avoiding Collisions

• Preliminary results on network classification datasets:

43

RED: PIC 

embedding 

with a random 

start vector

GREEN: PIC 

using a degree 

start vector

BLUE: PIC 

using 4 

random start 

vectors

Dataset (k)

1-dimension PIC embeddings 

lose on accuracy at higher k’s

compared to NCut and NJW

# of clusters

But  using a 4 

random vectors 

instead helps!

Note # of 

vectors << k 

PIC Extension: Avoiding Collisions

• Preliminary results on name disambiguation datasets:

44

Again using a 4 

random vectors  

seems to work!

Again note # of 

vectors << k

PIC Extension: Avoiding Collisions

• 2-dimensional embedding of Football dataset:

45
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Each circle is a 

college embedded in 

2d space. Colors 

correspond to 

football conferences

X-axis position 

determined by a PIC 

vector with random 

start

Y-axis 

position 

determined 

by another 

PIC vector 

with 

random 

start

Notice how 

“collisions” in a 

single dimension 

is resolved!
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PIC Extension: Hierarchical Clustering

• Real, large-scale data may not have a “flat” 

clustering structure

• A hierarchical view may be more useful

46

Good News:

The dynamics of a PIC embedding 

display a hierarchically convergent 

behavior!

PIC Extension: Hierarchical Clustering

• Why?

• Recall PIC embedding at time t:

47
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Less significant 

eigenvectors / structures 

go away first, one by one

More salient 

structure stick 

around

e’s – eigenvectors 

(structure)
SmallBig

There may not 

be a clear 

eigengap - a 

gradient of 

cluster saliency

Details

PIC Extension: Hierarchical Clustering

48

PIC already 

converged to 

8 clusters…

But let’s keep 

on iterating…

“N” still a part 

of the “2009” 

cluster…

Similar behavior also noted 

in matrix-matrix power 

methods (diffusion maps, 

mean-shift, multi-resolution 

spectral clustering)

Same dataset 

you’ve seen

Yes!
(it might take a while)
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Questions & Discussion

• Further questions & discussions:

– frank@cs.cmu.edu

– GHC 5507

49

Additional Information

50

PIC: Related Clustering Work

• Spectral Clustering
– (Roxborough & Sen 1997, Shi & Malik 2000, Meila & Shi 2001, Ng et al. 2002)

• Kernel k-Means (Dhillon et al. 2007)

• Modularity Clustering (Newman 2006)

• Matrix Powering
– Markovian relaxation & the information bottleneck method (Tishby & Slonim

2000)

– matrix powering (Zhou & Woodruff 2004)

– diffusion maps (Lafon & Lee 2006)

– Gaussian blurring mean-shift (Carreira-Perpinan 2006)

• Mean-Shift Clustering
– mean-shift (Fukunaga & Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002)

– Gaussian blurring mean-shift (Carreira-Perpinan 2006)

51



2011-09-27

18

PIC: Some “Powering” Methods at a 

Glance

Method W Iterate Stopping Final

Tishby & 

Slonim 2000
W=D-1A Wt+1=Wt

rate of 

information 

loss

information 

bottleneck

method

Zhou & 

Woodruff 

2004

W=A Wt+1=Wt a small t a threshold ε

Carreira-

Perpinan

2006

W=D-1A Xt+1=WX entropy a threshold ε

PIC W=D-1A vt+1=Wvt acceleration k-means

How far can we go with a 

one- or low-dimensional 

embedding?
52

PIC: Versus Popular Fast Sparse 

Eigencomputation Methods

For Symmetric

Matrices

For General

Matrices
Improvement

Successive Power 

Method

Basic; numerically 

unstable, can be 

slow

Lanczos Method Arnoldi Method

More stable, but 

may require lots of 

time and memory

Implicitly Restarted 

Lanczos Method 

(IRLM)

Implicitly Restarted 

Arnoldi Method

(IRAM)

More time- and 

memory-efficient

53

Method Time Space

IRAM (O(m3)+(O(nm)+O(e))×O(m-k))×(# restart) O(e)+O(nm)

PIC O(e)x(# iterations) O(e)

Randomized 

sampling 

methods are 

also popular

n = # nodes

e = # edges

k =

# eigenvectors

m (>k) =

Arnoldi Length

PICwPF: Results

• A scalability result:

y: algorithm 

runtime 

(log scale)

x: data size 

(log scale)

Linear 

curve

Quadratic 

curve

Spectral clustering 

(red & blue)

Our method 

(green)
54
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PICwPF: Results
Each point 

represents 

the accuracy 

result from a 

dataset

Lower triangle: 

k-means wins

Upper triangle: 

PIC wins

55

PICwPF: Results
Two methods 

have almost the 

same behavior

Overall, one 

method not 

statistically 

significantly 

better than 

the other

56

PICwPF: Results

Not sure why 

NCUTiram did 

not work as well 

as NCUTevd

Lesson: 

Approximate 

eigen-

computation 

methods may 

require 

expertise to 

work well

57
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PICwPF: Results

• PIC is O(n) per iteration and the runtime curve looks 
linear…

• But I don’t like eyeballing curves, and perhaps the 
number of iteration increases with size or difficulty of 
the dataset?

Correlation 

plotCorrelation statistic

(0=none, 1=correlated) 58

PICwPF: Results

• Linear run-time implies constant number of 

iterations.

• Number of iterations to “acceleration-

convergence” is hard to analyze:

– Faster than a single complete run of power 

iteration to convergence.

– On our datasets

• 10-20 iterations is typical

• 30-35 is exceptional

59

PICwPF: Related Work

• Faster spectral clustering

– Approximate eigendecomposition (Lanczos, IRAM)

– Sampled eigendecomposition (Nyström)

• Sparser matrix

– Sparse construction

• k-nearest-neighbor graph

• k-matching

– graph sampling / reduction

Not O(n) time 

methods

Still require O(n2) 

construction in 

general

Not O(n) space 

methods

60
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PICwPF: Results

61


