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Clustering

Spectral Clustering

Power Iteration Clustering (PIC)

— PIC with Path Folding

— PIC Extensions

Clustering

* Automatic grouping of data points
¢ 3 example datasets:
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k-means

* A well-known clustering method
— Given: Points in Euclidean space and an integer k
— Find: k clusters determined by k centroids
— Objective: Minimize within-cluster sum of square distances
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Graph Clustering

Given: Data = Network = Graph = Matrix
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Example - Normalized Cut:

Graph Cluster .., wn  wis

w(A, V) w(B,V)

Find: Partitions of the graph
Objective: Minimizes (or maximizes) an objective function according
to a certain definition of a “balanced cut”
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B: 1
Exact Solution is 1
NP-hard! 1
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Talk Outline

¢ Clustering
» * Spectral Clustering
* Power lIteration Clustering (PIC)

— PIC with Path Folding
— PIC Extensions

2011-09-27

Relax solution

Spectral ClUSteri to take on real values,

then compute via
eigencomputation
* Does two things:
1. Provides good polynomial-time approximation to
the balanced graph cut problem
2. Clustering according to similarity, not Euclidean
space

Recall that

similarity can be
represented as a
graph/matrix

Spectral Clustering

* How: Cluster data points in the space spanned
by the “significant” eigenvectors (spectrum) of
a [Laplacian] similari*

A popular spectral

clustering method:
normalized cuts (NCut)




Spectral Clustering

¢ Results with Normalized Cuts:
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Spectral Clustering
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Can we find a similar low-
dimensional embedding for
clustering without eigenvectors?

Finding eigenvectors

ERLECOEITEGER corithm (Shi & Malik 2000):

matrix |-s still pretty milarity function s
slow in general

, let W=I-D'A, where [ is the identity
matrix Mg D is a diagonal square matrix D;=3;A;

3. Find eigenvectors and corresponding eigenvalues of W/

4. Pick the k eigenvectors of W with the 27 to k" smallest
corresponding eigenvalues as “significant” eigenvectors

5. Project the data points onto the space spanned by these
vectors

6. Run k-means on the projected data points
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Talk Outline

Clustering
Spectral Clustering
) * Power Iteration Clustering (PIC)

— PIC with Path Folding
— PIC Extensions

Power Iteration Clustering

Spectral clustering methods are nice, and a
natural choice for graph data

But they are rather expensive and slow

Power iteration clustering (PIC) can

provide a similar solution at a very
low cost (fast)!

The Power lteration

* Or the power method, is a simple iterative method

for finding the dominant eigenvector of a matrix:
Typically vi:the
converges quickly; .vectc')r at
fairly efficient if W iteration t;
is a sparse matrix

- VO typically a
¢ :anormalizing W:a FEelEm
constant to keep vt
: square vector
from getting too large .
matrix
or too small




The Power lteration

¢ Or the power method, is a simple iterative method
for finding the dominant eigenvector of a matrix:

t+1 t
v =cWyv
Row-
normalized
similarity
matrix

What if we let W=D"A
(like Normalized Cut)?
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The Power lteration

Power Iteration Clustering

The 2" to kth eigenvectors of W=D"A are
roughly piece-wise constant with respect to
the underlying clusters, each separating a
cluster from the rest of the data

The linear combination of piece-wise constant
vectors is also piece-wise consta




Spectral Clustering
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dataset and
PIC results

Power Iteration Clustering
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Key idea: to do clustering, we may not need

all the information in a full spectral

embedding (e.g., distance between clusters
in a k-dimension eigenspace)

we just need the clusters to be
separated in some space.




Recall:

At the beginning, v changes fast
(“accelerating”) to converge

vt — Clﬂ;el locally due to “noise terms” +.4c ﬂ/’ e

(k+1...n) with small A n“"n>'n

Then:

t I3 I3 I3
v oA ol A c, 4,
—=¢ +...+—k(—k] e, +ﬂ[ﬂ] €. +...+—”[—”J e,
ok alA o U4 al\4

Because they are raised
to the power t, the
eigenvalue ratios
determines how fast v
convergestoe;

When “noise terms” have gone to zero, v
changes slowly (“constant speed”) because

only larger A terms (2...k) are left, where the
eigenvalue ratios are close to 1
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Power Iteration Clustering

* A basic power iteration clustering (PIC) algorithm:

Input: A row-normalized affinity matrix W and the number of clusters k
Output: Clusters C,, C,, ..., C,
1. Pick an initial vector v° 7
2. Repeat i.e., when

+ Setvil & Wit acceleration is

+ Setdl & vl

¢ Incrementt

* Stopwhen [6'-58"'[ =0
3. Use k-means to cluster points on v and return clusters C,, C,, .

nearly zero

Gy

PIC Runtime

Normalized Cut, faster

Normalized C

implementation
Table 4. Runtime %) of PIC and
spectral clustering algoMhms on syntheti®datasets.
Nodes Edges NCutE NCutl PIC
1k 10k 1,885 177 1
5k 250k 154,797 6,939 7
10k 1,000k | 1.111.441  42.045 34
50k 25,000k 849
100,000k 2,960

arison (in millisé

Ran out of memory

(24GB)




PIC Accuracy on Network Datasets

Upper
triangle:
PIC does

better

Normalized Mutual Information

o x .
X Lower
xo" triangle:
02 & J NCut or
NCarvs PIC NJW does
. L Nwvspic O better
0 0.2 0.4 0.6 0.8 1

NCut and NJW
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Talk Outline

¢ Clustering

 Spectral Clustering

¢ Power Iteration Clustering (PIC)
) - PIC with Path Folding
— PIC Extensions

Clustering Text Data

* Spectral clustering methods are nice

* We want to use them for clustering text data




The Problem with Text Data

* Documents are often represented as feature
vectors of words:

The importance of a Web
page is an inherently

subjective matter, which
depends on the readers..,

In this paper, we present
Google, a prototype of a
large-scale search engine

which makes heavy use...

You're not cool just
because you have a lot of
followers on twitter, get
over yourself...
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The Problem with Text Data

* Feature vectors are often sparse
* But similarity matrix is not!

Mostly non-zero
-any two
documents are
likely to have a
word in common

Mostly zeros - any
document contains
only a small fraction

of the vocabulary

In general O(n3);
approximation
methods still not
very fast

The Problem with Text

* A similarity matrix is the input to ma
methods, including spectral clustering

expensive!
Does not
scale up to

big
datasets!
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The Problem with Text Data

* We want to use the similarity matrix for
clustering (like spectral clustering), but:
— Without calculating eigenvectors

constructing or storing the similarity

Power Iteration
Clustering

+ Path Folding
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Path Folding

Okay, we have a fast clustering
* Ab method — but there’s the W that
requires O(n?) storage space and
construction and operation time!

1. Pick an initial ¥
2. Repeat

Key operation in PIC

Note: matrix-vector
multiplication!

Path Folding

¢ What’s so good about matrix-vector H(::’. CEUId
multiplication? B2
. better?
 If we can decompose the matrix...

v =Wv' = (ABC)V'
u |

* Then we arrive at the same solution doing a
series of matrix-vector multiplications!

v = (A(B(CV")))

11



Path Folding

* As long as we can decompose the matrix into
a series of sparse matrices, we can turn a
dense matrix-vector multiplication into a
series of sparse matrix-vector multiplications.

This is exactly
This means that we can turn an the case for
operation that requires O(n?) text data
storage and runtime into one that

requires ~O(n) storage and runtime! And many other
kinds of data as well!
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\/@ Path Folding
* Example —inner product similarity:
|

Why is it *n
and not n?

Diagonal matrix The original The feature
that normalizes W feature matrix
so rows sum to 1 matrix transposed

r

~ Construction: given Construction: given
Storage: ~n

Storage: ~O(n) Storage: just use F

Okay...how about a
\/@ . similarity function
Path FOIdIn we actually use for

text data?

* Example —inner product similarity:

Construction: Storage:
~0(n) ~0(n)

Operation:
~0(n)

* |teration U

Vt+1 — D—I(F(FTvt))

12



* Example — cosine similarity:

Construction:
~0(n)

Path Folding

Storage:
~0O(n)

Diagonal
cosine
normalizing
matrix

Operation:
~0(n)
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* Iteration G
Mor4e0n
V1 =D (N(F(FT(NV'")))) i

later!

Compact storage: we don’t need a cosine-
normalized version of the feature vectors 37

Path Folding

* We refer to this technique as path folding due
to its connections to “folding” a bipartite

graph into a unipartite graph.

Results
Diagonal: tied
* An accuracy result: (most datasets)
Upper triangle: 0 Accuracy of NCUTevd vs PIC

we win

e &

90 T A

g5 * . Fan

. 80 - o~
el
z of P
70 - &
65 - o
_ 5

Each pointis - SR R Lower triangle:
accuracy for * |
a 2-cluster 95T Dy R

so clustering wins
text dataset 50 55 60 65 70 75 80 85 90 95 100 £

NCUTevd v
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¢ Clustering
¢ Spectral Clustering

¢ Power Iteration Clustering (PIC)
— PIC with Path Folding
|:> — PIC Extensions

PIC Extension: Avoiding Collisions

* One robustness question for vanilla PIC as data
size and complexity grows:

* How many (noisy) clusters can you fit in one
dimension without them “colliding”?

PIC Extension: Avoiding Collisions

* Asolution:

Run PIC d times with different random starts and
construct a d-dimension embedding

Unlikely two clusters collide on all d dimensions

We can afford it because PIC is fast and space-
efficient!

14



PIC Extension: Avoiding Collisions

* Preliminary results on network classification datasets:
1-dimension PIC embeddings
lose on accuracy at higher k’s
compared to NCut and NJW

RED: PIC

embedding
with a random
start vector

GREEN: PIC

using a degree Waawa)  Doprin) UMOCBco) AGBo9a) | PABGok) Gieses) | Coan  Fectalio) MOEais)
start vector

BLUE: PIC y
using 4 Dataset (k) But using a 4

random vectors
instead helps!

Note # of

random start
vectors << k

vectors
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PIC Extension: Avoiding Collisions

* Preliminary results on name disambiguation datasets:

A AK(14) CoU6) DU L1000 J16) JAGE) IS0 KIGO) MBI WA Wiz [ s Yo |

Again using a 4

random vectors
seems to work!

PIC Extension: Avoiding Collisions

* 2-dimensional embedding of Football dataset:

Eachcircle is a
college embedded in
2d space. Colors
correspond to
football conferences

Notice how
“collisions” in a

Y-axis
position
determined

single dimension
is resolved!

by another
PIC vector
with
random
start

X-axis position
determined by a PIC
vector with random
start

15



PIC Extension: Hierarchical Clustering

* Real, large-scale data may not have a “flat”
clustering structure

* A hierarchical view may be more useful

Good News:
The dynamics of a PIC embedding

display a hierarchically convergent
behavior!

2011-09-27

\\P/I/C/Extension: Hierarchical Clustering

* Why?
* Recall PIC embedding at time t:

Big

il

S

More salient There may not Less significant
structure stick be a clear eigenvectors / structures

around eigengap - a go away first, one by one
gradient of
cluster saliency

PIC Extension: Hierarchical Clustering

Same dataset
It L] you've seen

Similar behavior also noted
in matrix-matrix power
methods (diffusion maps,
mean-shift, multi-resolution
spectral clustering)

PIC already “N” still a part
of the “2009”

cluster...

But let’s keep
on iterating...

converged to
8clusters...
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Questions & Discussion

* Further questions & discussions:

— frank@cs.cmu.edu
— GHC 5507
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Additional Information

PIC: Related Clustering Work

Spectral Clustering
— (Roxborough & Sen 1997, Shi & Malik 2000, Meila & Shi 2001, Ng et al. 2002)
* Kernel k-Means (Dhillon et al. 2007)
* Modularity Clustering (Newman 2006)
* Matrix Powering

— Markovian relaxation & the information bottleneck method (Tishby & Slonim
2000)

— matrix powering (Zhou & Woodruff 2004)
— diffusion maps (Lafon & Lee 2006)
— Gaussian blurring mean-shift (Carreira-Perpinan 2006)
* Mean-Shift Clustering
— mean-shift (Fukunaga & Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002)
— Gaussian blurring mean-shift (Carreira-Perpinan 2006)

17



PIC: Some “Powering” Methods at a

Method Iterate Stopping

rate of information
ELTE W=D"A W#1=Wt | information | bottleneck

Slonim 2000
loss method
Zhou &
Woodruff W=A Wei=Wt asmallt a threshold &
2004

PIC W=DA vi=Wvt | acceleration k-means

How far can we go with a

one- or low-dimensional
embedding?
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PIC: Versus Popular Fast Sparse
Eigencomputation Methods 77

sampling

For Symmetri For General methods are
i Improvement also popular
Matrices Matrices

Basic; numerically
unstable, can be

Successive Power

Method
slow
More stable, but
Lanczos Method Arnoldi Method may require lots of
time and memory n=# nodes
dges
Implicitly Restarted  Implicitly Restarted .
Lanczos Method Arnoldi Method mNel‘:z ":?ficai::t
(IRLM) (IRAM) Y
T S
IRAM (0(m?)+(0(nm)+0(e))xO(m-k))x(# restart) 0(e)+0(nm)
PIC O(e)x(# iterations) Ofe)

y: algorithm
runtime
(log scale)

¢ Ast

PICwPF: Results

lability result: Spectral clustering
(red & blue)

100000 777 __

Quadratic

10000

1000

Linear
curve

Runtime (sec)
=

x: data size
(log scale)

Our method
(green)
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Each point

Aonis CWPF: Results  [Essus
» the accuracy
result from
Accuracy of k-means vs PIC dataset

100
a5
[0
85
80
75
el
65
60
55

PIC

Lower triangle:
k-means wins

50
50 55 60 65 70 75 80 &5 80 95100
l-means
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PICWPF: Result %

Accuracy of NCUTevd vs PIC

100
95 | 1
90
85 | .
80 |
75
70
65 |
60
55 |

PIC

50 L
50 55 60 65 70 75 80 85 90 95100
NCUTewd

PICwPF: Results

Lesson:
Accuracy of NCUTiram vs PIC Approximate
eigen-
computation
methods may
require
expertise to
work well

100

e - A .

P
e
Y,

PIC
=
]

Not sure why

:: brir e e NCUTiram did
50 55 60 65 70 75 80 85 90 95100 | Lo (o)==

NCUTiram as NCUTevd

19



PICwPF: Results

e PICis O(n) per iteration and the runtime curve looks
linear...

* Butl don't like eyeballing curves, and perhaps the
number of iteration increases with size or difficulty of
the dataset?

Size vs PIC Iterations. Size vs PIC Accuracy

PIC herations

Dataset Size Dataset Size

(a) R? = 0.0424 (b) R2 = 0.0552

Correlation statistic

(0=none, 1=correlated)

58
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PICwPF: Results

« Linear run-time implies constant number of
iterations.

* Number of iterations to “acceleration-
convergence” is hard to analyze:

— Faster than a single complete run of power
iteration to convergence.
— On our datasets
« 10-20 iterations is typical
* 30-35 s exceptional

PICwPF: Related Wo

* Faster spectral clustering
— Approximate eigendecomposition (Lanczos, IRAM)
— Sampled eigendecomposition (Nystrom)

* Sparser matrix Still require O(n?)

— Sparse construction constructionin
general

« k-nearest-neighbor graph
* k-matching
— graph sampling / reduction

Not O(n) space

methods

20



PICwPF: Results
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ACC-Avg NMI-Avg
baseline 57.59 -
k-means 69.43 0.2629

NCUTevd 77.55 0.3962
NCUTiram 61.63 0.0943
PIC 76.67 0.3818
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