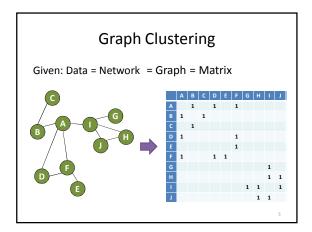
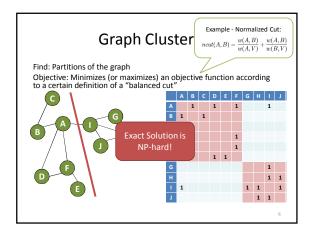
Power Iteration Clustering	
Frank Lin	
15-826 Multimedia Databases and Data Mining School of Computer Science Carnegie Mellon University	
2011-09-27	
	1
Talk Outline	
ClusteringSpectral Clustering	
 Power Iteration Clustering (PIC) 	
PIC with Path FoldingPIC Extensions	

Clustering

- Automatic grouping of data points
- 3 example datasets:

k-means A well-known clustering method Given: Points in Euclidean space and an integer k Find: k clusters determined by k centroids Objective: Minimize within-cluster sum of square distances





- Clustering
- Spectral Clustering
 - Power Iteration Clustering (PIC)
 - PIC with Path Folding
 - PIC Extensions

Spectral Clusterin
Relax solution to take on real values then compute via

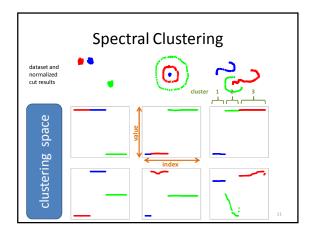
- · Does two things:
 - 1. Provides good polynomial-time approximation to the balanced graph cut problem
 - 2. Clustering according to similarity, not Euclidean

Spectral Clustering

• How: Cluster data points in the space spanned by the "significant" eigenvectors (spectrum) of a [Laplacian] similarit matrix

Not familiar with eigenvectors? Details on spectral analysis, eigen-vectors/values, SVD will all be covered extensively 6-7 lectures later! Stay tuned!

A popular spectral clustering method: normalized cuts (NCut)



Finding eigenvectors and eigenvalues of a matrix is still pretty slow in general

3. Find eigenvectors and corresponding eigenvalues of W

4. Pick the k eigenvectors of W with the 2nd to kth smallest corresponding eigenvalues as "significant" eigenvectors

5. Project the data points onto the space spanned by these vectors

6. Run k-means on the projected data points

- Clustering
- Spectral Clustering

- Power Iteration Clustering (PIC)
 - PIC with Path Folding
 - PIC Extensions

13

Power Iteration Clustering

- Spectral clustering methods are nice, and a natural choice for graph data
- But they are rather expensive and slow

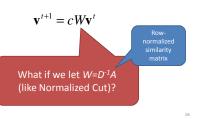
Power iteration clustering (PIC) can provide a similar solution at a very

14

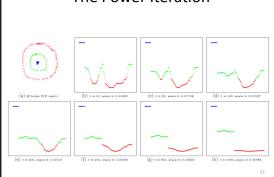
The Power Iteration • Or the power method, is a simple iterative method for finding the dominant eigenvector of a matrix: Typically converges quickly; fairly efficient if W is a sparse matrix \mathbf{v}^t : the vector at iteration t; iteration t; \mathbf{v}^t : a square matrix \mathbf{v}^t : the vector at iteration \mathbf{v}^t : a square matrix

The Power Iteration

• Or the power method, is a simple iterative method for finding the dominant eigenvector of a matrix:

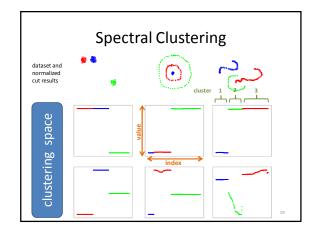


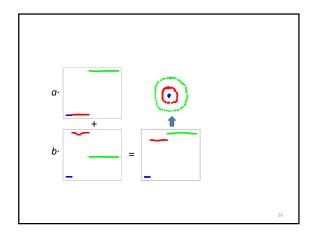
The Power Iteration

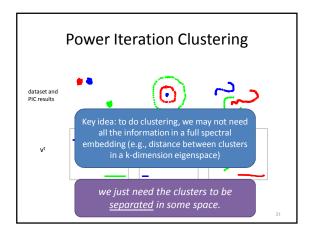


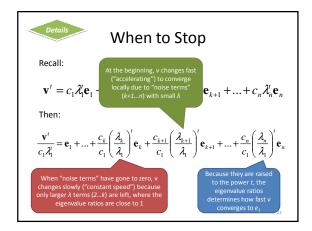
Power Iteration Clustering

- The 2nd to kth eigenvectors of W=D⁻¹A are roughly piece-wise constant with respect to the underlying clusters, each separating a cluster from the rest of the data
- The linear combination of piece-wise constant vectors is also piece-wise constant!





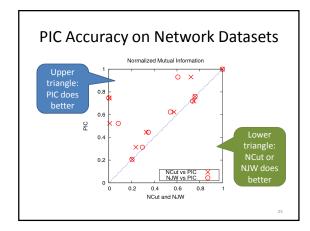




Power Iteration Clustering

• A basic power iteration clustering (PIC) algorithm:

PIC Runtime Table 4. Runtime arison (in millis of PIC and hms on synthetic NCutE N spectral clustering alg datasets PIC \mathbf{Nodes} Edges \mathbf{NCutI} 1k 10k 1,885 154,7976,939 5k 250k1,000k 10k1,111,441 42,045 34 25,000k 50k849 100k 100,000k Ran out of memory (24GB)



- Clustering
- Spectral Clustering
- Power Iteration Clustering (PIC)
- → PIC with Path Folding
 - PIC Extensions

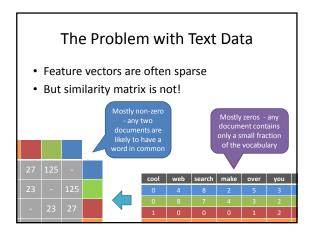
26

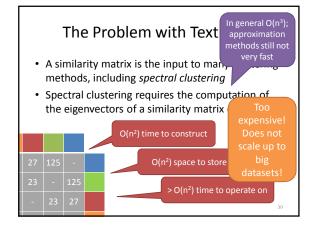
Clustering Text Data

- Spectral clustering methods are nice
- We want to use them for clustering text data

(A lot of)

The Problem with Text Data • Documents are often represented as feature vectors of words: The importance of a Web page is an inherently subjective matter, which depends on the readers. In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use... You're not cool just because you have a lot of followers on twitter, get over yourself...





The Problem with Text Data

- We want to use the similarity matrix for clustering (like spectral clustering), but:
 - Without calculating eigenvectors
 - Without constructing or storing the similarity matrix

Power Iteration Clustering

+ Path Folding

Path Folding Okay, we have a fast clustering orithm: A ba method – but there's the W that requires O(n²) storage space and Input: usters k construction and operation time! 1. Pick an initial 2. Repeat Key operation in PIC Set v^{t+1} ← Wv^t
 Set δ^{t+1} ← | V^{t+1} Increment Stop when 3. Use *k*-mg usters C₁, C₂, ..., C_k

Path Folding

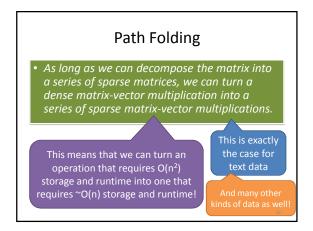
- What's so good about matrix-vector multiplication?
- If we can decompose the matrix...

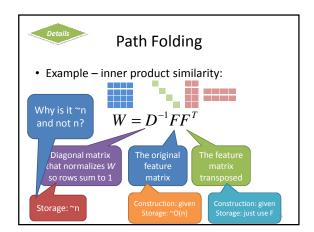
$$\mathbf{v}^{t+1} = W\mathbf{v}^t = (ABC)\mathbf{v}^t$$

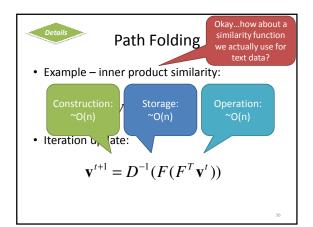
• Then we arrive at the same solution doing a series of matrix-vector multiplications!

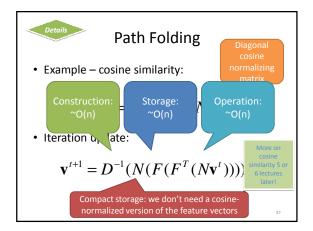
$$\mathbf{v}^{t+1} = (A(B(C\mathbf{v}^t)))$$

How could



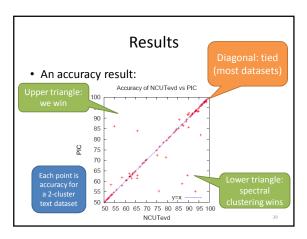






Path Folding

 We refer to this technique as <u>path folding</u> due to its connections to "folding" a bipartite graph into a unipartite graph.



- Clustering
- Spectral Clustering
- Power Iteration Clustering (PIC)
 - PIC with Path Folding

- PIC Extensions

40

PIC Extension: Avoiding Collisions

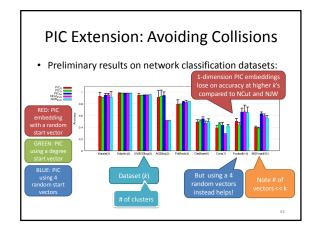
- One robustness question for vanilla PIC as data size and complexity grows:
- How many (noisy) clusters can you fit in one dimension without them "colliding"?

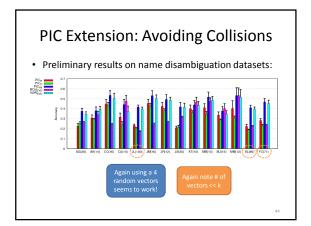
PIC Extension: Avoiding Collisions

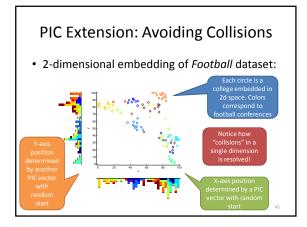
• A solution:

Run PIC *d* times with different random starts and construct a *d*-dimension embedding

- Unlikely two clusters collide on all d dimensions
- We can afford it because PIC is fast and spaceefficient!





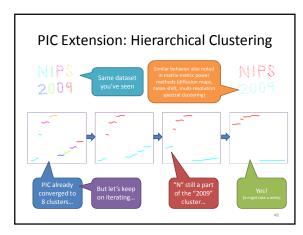


PIC Extension: Hierarchical Clustering

- Real, large-scale data may not have a "flat" clustering structure
- A hierarchical view may be more useful

Good News:
The dynamics of a PIC embedding display a hierarchically convergent hebavior!

46



Questions & Discussion	
	_
• Further questions & discussions:	
- <u>frank@cs.cmu.edu</u> - GHC 5507	
49	
Additional Information	
Additional information	
	_
50	

PIC: Related Clustering Work

- Spectral Clustering
 (Roxborough & Sen 1997, Shi & Malik 2000, Meila & Shi 2001, Ng et al. 2002)
 Kernel k-Means (Dhillon et al. 2007)
 Modularity Clustering (Newman 2006)

- Modularity Clustering (Newman 2006)

 Matrix Powering

 Markovian relaxation & the information bottleneck method (Tishby & Slonim 2000)

 matrix powering (Zhou & Woodruff 2004)

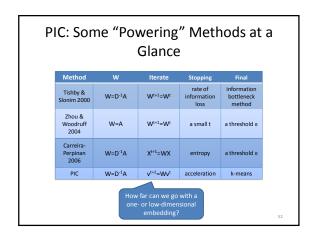
 diffusion maps (Lafon & Lee 2006)

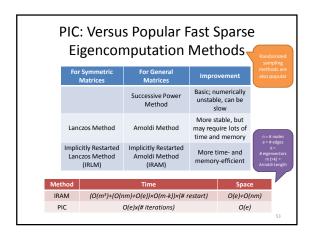
 Gaussian blurring mean-shift (Carreira-Perpinan 2006)

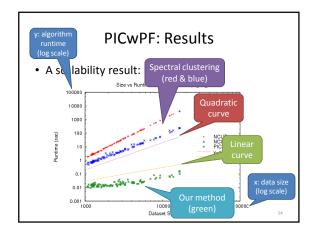
 Mean-Shift Clustering

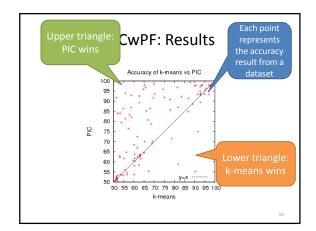
 mean-shift (Fukunaga & Hostetler 1975, Cheng 1995, Comaniciu & Meer 2002)

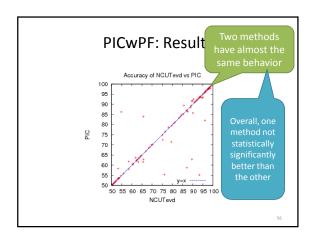
 Gaussian blurring mean-shift (Carreira-Perpinan 2006)

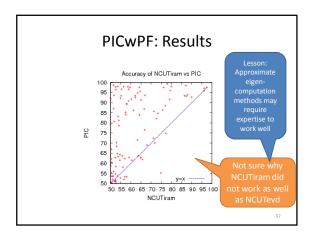












PICwPF: Results • PIC is O(n) per iteration and the runtime curve looks • But I don't like eyeballing curves, and perhaps the number of iteration increases with size or difficulty of the dataset?

(b) $R^2 = 0.0552$

PICwPF: Results

- Linear run-time implies constant number of iterations.
- · Number of iterations to "accelerationconvergence" is hard to analyze:
 - Faster than a single complete run of power iteration to convergence.
 - On our datasets

linear...

• 10-20 iterations is typical

(a) $R^2 = 0.0424$

Correlation statistic (0=none, 1=correlated)

• 30-35 is exceptional

PICwPF: Related Wo Faster spectral clustering - Approximate eigendecomposition (Lanczos, IRAM) - Sampled eigendecomposition (Nyström) Sparser matrix Sparse construction • k-nearest-neighbor graph k-matching – graph sampling / reduction

PICwPF: Results

ACC-Avg	NMI-Avg
57.59	-
69.43	0.2629
77.55	0.3962
61.63	0.0943
76.67	0.3818
	57.59 69.43 77.55 61.63