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Motivation
2

• Disease Propagation
• Blog Cascades
• Viral Marketing
• Influence Propagation

One liner: “Contagions spreading over a network”

© B. A. Prakash (2011)

Reading Material
3

� Primary: Chapter 21, Networks, Crowds, and Markets: 
Reasoning about a Highly Connected World.  

by David Easley and Jon Kleinberg. Cambridge University Press, 2010.

http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch21.pdf

� Additional: The Mathematics of Infectious Diseases

by H. W. Hethcote. SIAM Review Volume 42, Issue 4, 2000.

http://www.maths.usyd.edu.au/u/marym/populations/hethcote.pdf

© B. A. Prakash (2011)



9/15/2011

2

� Contagions over a network

Underlying phenomenon

Human contact-
networks

Biological Viruses 
e.g. H1N1

4

© B. A. Prakash (2011)

� examples…

Contagions over networks

Computer 
Networks

Computer Viruses 
e.g. trojans

5

© B. A. Prakash (2011)

� examples…

Contagions over a network

Influence networks Products

6

© B. A. Prakash (2011)
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� examples…

Contagions over a network

Influence networks Ideas/Rumors/Facts

7

© B. A. Prakash (2011)

Two fundamental questions

Epidemic!

Strong 
Virus

Q1: 
Threshold?

8

© B. A. Prakash (2011)

example (static graph)

Small 
infection

Weak 
Virus

9

Q1: 
Threshold?

© B. A. Prakash (2011)
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Questions…

Which nodes 
to remove?

?

?

10

Q2: 
Immunization

© B. A. Prakash (2011)SARS costs 700+ lives; $40+ Bn; H1N1 costs Mexico $2.3bn

This lecture…
11

�Focus on propagation processes on 
arbitrary static and dynamic networks 
and temporal evolution of data.

�Theory: 
�Tipping point? Footprint? Etc.

�Algorithms:
�Which nodes to immunize? Etc.

© B. A. Prakash (2011)

Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

Propagation 
Models on 
Dynamic 
Graphs

12

© B. A. Prakash (2011)
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Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold Theorem (AS1) Full Symmetric Static       
Immunization (NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds (AD1) Full Symmetric Dynamic   
Immunization

13

Tipping point?
Immunization 

Algorithms

© B. A. Prakash (2011)

Outline
14

� Introduction

� Terminology

� Theory 

� Algorithms

� Open Problem

� Conclusion

© B. A. Prakash (2011)

� Each node in the graph is in one of three states

� Susceptible (i.e. healthy)

� Infected

� Removed (i.e. can’t get infected again)

15

Prob. δ

t = 1 t = 2 t = 3

“SIR” model (mumps-like)

© B. A. Prakash (2011)
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Terminology: continued
16

� Other virus models

�SIS : susceptible-infected-susceptible, flu-like

�SIRS : temporary immunity, like pertussis

�SEIR : mumps-like with virus incubation 

(E = Exposed)

� Underlying contact-network – ‘who-can-infect-
whom’

�Nodes (people/computers)  

�Edges (links between nodes)

© B. A. Prakash (2011)

Related Work
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� ………
© B. A. Prakash (2011)

All are about either:

�Structured 
topologies (cliques, 
block-diagonals, 
hierarchies, random) 

�Specific virus 
models

�Static graphs

Outline
18

� Introduction

� Terminology

� Theory 

� Algorithms

� Open Problem

� Conclusion

© B. A. Prakash (2011)
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Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold theorem (AS1) Full Symmetric Static       
Immunization (NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds (AD1) Full Symmetric Dynamic   
Immunization

19

© B. A. Prakash (2011)

Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold 
theorem

(AS1) Full Symmetric Static       
Immunization (NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds (AD1) Full Symmetric Dynamic   
Immunization

20

© B. A. Prakash (2011)

(TS1) Static Graphs: G2-threshold Theorem
21

Problem Statement

� Given: 

�An undirected unweighted graph G, and

�A virus propagation model (VPM) and its 
parameters (e.g.,  β and δ for SIR)

� Find: 

�A condition for virus extinction/invasion

© B. A. Prakash (2011)In Prakash+ ICDM 2011.  Also posted as arXiv:1004.0060
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Intuitively

© B. A. Prakash (2011)

22

� Answer should depend on:

�Graph

�Virus Propagation Model (VPM)

� But how??

�Graph – average degree? max. degree? diameter?

�VPM – which parameters? 

�How to combine – linear? quadratic? exponential?

Static Graphs: G2-threshold Theorem 
23

� Main result (informal):

�

For,
� any arbitrary topology (adjacency 

matrix A)
� any virus propagation model (VPM) in 

standard literature

the epidemic threshold depends only 
1. on the λ, first eigenvalue of A, and
2. some constant       , determined by 

the virus propagation model

“G2”: two  
orthogonal 

generalizations 

λλ

VPM
C

No 
epidemic 

if                                                                                                              
λ *        < 1

VPM
C

VPM
C

© B. A. Prakash (2011)

Thresholds for some models
24

� s = effective strength

� s < 1 : below threshold
Models Effective

Strength (s)
Threshold
(tipping point)

SIS, SIR, SIRS, 
SEIR

s = λ .   

s = 1
SIV, SEIV s = λ .   

(H.I.V.) s = λ .   
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© B. A. Prakash (2011)

� “Official” definition:

Let A be the adjacency matrix. Then λ is the root 
with the largest magnitude of the characteristic 
polynomial of A [det(A – xI)].

� Yeah, doesn’t give too much intuition! ☺

Largest Eigenvalue (λ)

26

better connectivity         higher λ

© B. A. Prakash (2011)

Largest Eigenvalue (λ)

27

© B. A. Prakash (2011)

better connectivity         higher λ

Largest Eigenvalue (λ)
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λ ≈ average degree, only better!

© B. A. Prakash (2011)

N nodes

Largest Eigenvalue (λ)

λ ≈ 2 λ = √N λ = N-1

Examples: Simulations - SIR 
29

(a) Infection profile                 (b) “Take-off” plot

PORTLAND graph: synthetic population, 
31 million links, 6 million nodes
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Examples: Simulations - SIRS 
30
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(a) Infection profile                 (b) “Take-off” plot

PORTLAND graph: synthetic population, 
31 million links, 6 million nodes

© B. A. Prakash (2011)
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So how did we do that? 

Some trivia
32

�first person in the US 
identified as a healthy 
carrier of the pathogen 
associated with typhoid 
fever.

� infected some 53 people, 
over the course of her career 
as a cook!

�forcibly quarantined by 
public health authorities

Two “Infected” States?
33

Symptomatic

1I 2I

Sneezing

SICR: 
with a 
carrier

Asymtomatic



9/15/2011

12

Two “Infected” States?
34

Infected and 

infectious

1I 2I

Sneezing

SEIR : 

mumps-like 

with virus 
incubation 

Exposed and 

not infectious

Our generalized model
35

Exogenous 
Transitions

Endogenous 
Transitions

Endogenous 
Transitions

Susceptible Infected

Vigilant

Unaided 
transitions

Caused by 
neighbors

© B. A. Prakash (2011)

Our generalized model
36

Endogenous 
Transitions

Susceptible Infected

Vigilant

© B. A. Prakash (2011)
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Our generalized model
37

Exogenous 
Transitions

Endogenous 
Transitions

Endogenous 
Transitions

Susceptible Infected

Vigilant

© B. A. Prakash (2011)

Special case
38

Exogenous 
Transitions

Endogenous 
Transitions

Endogenous 
Transitions

Susceptible Infected

Vigilant

© B. A. Prakash (2011)

Special case
39

Susceptible Infected

Vigilant

© B. A. Prakash (2011)
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Special case: SIR
40

© B. A. Prakash (2011)

Special case: SIR (permanent immunity)
41

© B. A. Prakash (2011)

Another special case: SEIV
42

� E == exposed latent state

‘Dropping guard’‘Pre-emptive vaccination’

SEIV: itself generalizes 
• SIR (mumps)  
• SIS (flu-like) 
• SIRS (pertussis)
• SEIR (varicella) etc.

no “sneezes”

infectious

© B. A. Prakash (2011)
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Special case: H.I.V. 
43

2121 VVISI

Multiple Infectious, 
Vigilant states

© B. A. Prakash (2011)

Models and more models
44

Model Used for

SIR Mumps

SIS Flu

SIRS Pertussis

SEIR Varicella

……..

SICR Tuberculosis

MSIR Measles

SIV Sensor 

Stability

H.I.V.

……….

2121 VVISI

© B. A. Prakash (2011)

Proof: Main Idea

� View as a NLDS

�discrete time 

�non-linear dynamical system (NLDS)

45

size 
mN x 1

.

.

.

.

Probability vector 
Specifies the state of 
the system at time t

© B. A. Prakash (2011)
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Proof: Main Idea

� View as a NLDS

�discrete time 

�non-linear dynamical system (NLDS)

46

Non-linear 
function
Explicitly gives the 
evolution of system

size 
mN x 1

.

.

.

.

© B. A. Prakash (2011)

Proof: Main Idea

� View as a NLDS

�discrete time 

�non-linear dynamical system (NLDS)

� Threshold � Stability of NLDS

47

© B. A. Prakash (2011)

= probability that node 
i is not attacked by   
any of its infectious 
neighbors

Special case: SIR
48

size 
3N x 1

II

R

SS

NLDS

II

R

SS

© B. A. Prakash (2011)
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Fixed Point
49

1

1
.

1

1
.

0

0
.

0

0
.

0

0
.

State when no node is 
infected

© B. A. Prakash (2011)

Stability for SIR
50

Stable
under threshold

Unstable
above threshold

© B. A. Prakash (2011)

51

General 
Model 
Structure

NLDS 
stability

λ *         < 1VPM
C

Graph-based

Model-based

© B. A. Prakash (2011)
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Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold Theorem (AS1) Full Symmetric Static       
Immunization (NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds
(AD1) Full Symmetric Dynamic   

Immunization

52

© B. A. Prakash (2011)

(TD1) Dynamic Graphs: Thresholds
53

� What about time-varying dynamic graphs?

© B. A. Prakash (2011)

(TD1) Dynamic Graphs: Thresholds

adjacency 
matrix

8

8

54

Alternating behaviorsDAY 
(e.g., work)

© B. A. Prakash (2011)
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Alternating Behaviors

adjacency 
matrix

8

8

55

NIGHT 
(e.g., home)

© B. A. Prakash (2011)

� SIS model
� recovery rate δ

� infection rate β

� Set of T arbitrary graphs

Model Description

day

N

N night

N

N
, weekend…..

Infected

Healthy

XN1

N3

N2

Prob. β

Prob. δ

56

© B. A. Prakash (2011)

Problem Statement
57

Find, a condition under which
� virus will die out exponentially quickly

� regardless of initial infection condition

above

below

# 
Infected 

time

© B. A. Prakash (2011)
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Should we,

© B. A. Prakash (2011)

58

� Add the adjacency matrices?

� Multiply? 

� “Superimpose”?

� or some other crazy combination?

+

x

� Informally, NO  epidemic  if

eig (S) =       < 1

Our result: Threshold

Single number! 
Largest eigenvalue of 

the “system matrix ” (dfn. next)

59

© B. A. Prakash (2011)In Prakash+, ECML-PKDD 2010

NO epidemic if
eig (S) =       < 1

S  =

Recovery rate Infection rate

……..

Adjacency matrices

N

N

day night

60

Infected

Healthy

XN1

N3

N2

Prob. β

Prob. δ

© B. A. Prakash (2011)



9/15/2011

21

� Synthetic

� 100 nodes

� - Clique                    - Chain

� MIT Reality Mining

� 104 mobile devices

�September 2004 – June 2005

� 12-hr adjacency matrices

(day)                (night)

Simulation Examples
61

© B. A. Prakash (2011)

Synthetic MIT Reality 
Mining

log(fraction infected)

Time

BELOW 
threshold

AT 
threshold

ABOVE ABOVE

AT 
threshold

BELOW 
threshold

Infection-profile
62

© B. A. Prakash (2011)

“Take-off” plotsFootprint     
(# infected @ 
“steady 
state”)

Our 

threshold

Our 

threshold

(log scale)

NO EPIDEMIC

EPIDEMIC

EPIDEMIC

NO EPIDEMIC

Synthetic MIT Reality

63

© B. A. Prakash (2011)
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Outline
64

� Introduction

� Terminology

� Theory

� Algorithms

� Open Problem

� Conclusion

© B. A. Prakash (2011)

Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold Theorem (AS1) Full Symmetric 
Static Immunization 
(NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds (AD1) Full Symmetric Dynamic   
Immunization

65

© B. A. Prakash (2011)

?

?

Given: a graph A, virus prop. model and budget k; 

Find: k ‘best’ nodes for immunization (removal).

k = 2

?
?

(AS1): Full Static Immunization
66

© B. A. Prakash (2011)In Tong, Prakash+ ICDM 2010
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Challenges
67

�Given a graph A, budget k,

Q1 (Metric) How to measure the ‘shield-

value’ for a set of nodes (S)?

Q2 (Algorithm) How to find a set of k
nodes with highest ‘shield-value’?

© B. A. Prakash (2011)

Proposed vulnerability λ
68

Increasing λ 
Increasing vulnerability

λ is the epidemic threshold!

“Safe” “Vulnerable” “Deadly”

© B. A. Prakash (2011)

1

9

10

3

4

5

7

8

6

2

9

1

11

10

3

4

5
6

7

8

2

9

Original Graph Without {2, 6}

s

Eigen-Drop(S) 

∆ λ = λ  - λs

69

∆

A1: Eigen-Drop: an ideal shield value
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(Q2) - Direct Algorithm too expensive!

� Immunize k nodes which maximize ∆ λ

S = argmax ∆ λ
� Combinatorial!

� Complexity:

�Example: 

�1,000 nodes, with 10,000 edges 

�It takes 0.01 seconds to compute λ

�It takes 2,615 years to find 5-best nodes! 

70

© B. A. Prakash (2011)

A2: Our Solution
71

� Part 1

�Approximate Eigen-drop (∆ λ)

� Not enough!

� Part 2

�Greedily pick best node at each step

� Algorithm: NetShield
�O(nk2+m)

© B. A. Prakash (2011)

Our Solution: Part 1

�Approximate Eigen-drop (∆ λ)

� ∆ λ ≈ SV(S) =

�Result using Matrix perturbation theory

�u(i) == ‘eigenscore’

~~  pagerank(i)
A u = λ . u

72

u(i)

© B. A. Prakash (2011)
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73

P1: node importance P2: set diversity

Original Graph Select by P1 Select by P1+P2
© B. A. Prakash (2011)

Done?

�S = argmax SV(S)

�Still combinatorial

�Complexity:

�Example: 

�1,000 nodes, with 10,000 edges 

�It takes 0.00001 seconds to compute SV(S)

�It takes 3 months to find 5-best nodes

74

© B. A. Prakash (2011)

Our Solution: Part 2: NetShield

� We prove that: 
SV(S) is sub-modular (& monotone non-
decreasing)

� NetShield: Greedily add best node at each 
step

Corollary: Greedy algorithm works
1. NetShield is near-optimal (w.r.t. max SV(S)) 
2. NetShield is O(nk2+m)

Footnote: near-optimal means SV(S NetShield) >= (1-1/e) SV(S Opt)

75

© B. A. Prakash (2011)
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Experiment: Immunization quality
76

Log(fraction 
of 
infected 
nodes)

NetShield

Degree

PageRank

Eigs (=HITS)

Acquaintance

Betweeness (shortest path)

Lower 

is 

better Time
© B. A. Prakash (2011)

> 10 days

0.1 seconds
NetShield

100,000

>=1,000,000

10,000

10

1

0.1

0.01

argmax ∆ λ

argmax SV(S)

Time

1,000

100

10,000,000x

# of vaccines

Lower 

is 

better

NetShield Speed
77

© B. A. Prakash (2011)

Lecture: Overview

Theory: Observations and 

Results

Algorithms: Tools

Propagation
Models on 
Static Graphs

(TS1) G2-threshold Theorem (AS1) Full Symmetric Static 
Immunization (NetShield)

Propagation 
Models on 
Dynamic 
Graphs

(TD1) Thresholds (AD1) Full Symmetric 
Dynamic 
Immunization

78

© B. A. Prakash (2011)
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(AD1) Full Dynamic Immunization 
79

� Given: 

Set of T arbitrary graphs 

� Find: 

k ‘best’ nodes to immunize (remove) 

day

N

N night

N

N , weekend…..

© B. A. Prakash (2011)In Prakash+ ECML-PKDD 2010

(AD1) Full Dynamic Immunization 
80

� Our solution

�Recall theorem

�Simple: reduce               (=    )

� Goal: max eigendrop ∆

� No competing policy for comparison

� We propose and evaluate many policies

Matrix 
Product

∆ =

day night

after before λλ −λ
λ

λ

© B. A. Prakash (2011)

20

22

24

26

28

30

32

34

Footprint after k=6 immunizations

Footprint

Performance of Policies 

Lower 
is better

81

© B. A. Prakash (2011)

MIT Reality 
Mining
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Lower 
is better

Optimal

Greedy-S

Greedy-DavgA

82

(# vaccines)
© B. A. Prakash (2011)

Outline
83

� Introduction

� Terminology

� Theory 

� Algorithms

� Open problem

� Conclusion

© B. A. Prakash (2011)

Periodicities in SIRS (temp. immunity)
84

Fraction 
of 
Infected

Time

c = # “shortcuts”

Small-World 
Graphs
(WS Model)

© B. A. Prakash (2011)Easley + Kleinberg 2010
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Periodicities in SIRS (temp. immunity)
85

c = # “shortcuts”

Small-World 
Graphs
(WS Model)

Fraction 
of 
Infected

Time

© B. A. Prakash (2011)Easley + Kleinberg 2010

Periodicities in SIRS (temp. immunity)
86

� Questions (for a class project? ☺)

�Can we observe it on arbitrary graphs?

�What properties of graphs cause it?

�What SIRS parameters determine it?

© B. A. Prakash (2011)

Outline
87

� Introduction

� Terminology

� Theory 

� Algorithms

� Open Problem

� Conclusion

© B. A. Prakash (2011)
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Conclusion
88

� Threshold depends (for any VPM)

�on λ (largest eigenvalue) of suitable matrix

� a constant

� Use ∆λ to guide immunization policies

� fast, scalable, provably near-optimal algorithms

© B. A. Prakash (2011)

VPMC

Conclusion
89

� Real, compelling applications in diverse
domains

� Lots of interesting research problems!

�we saw only some of them

�multiple competing viruses? (Iphone vs andriod)

�information diffusion (Twitter) etc. etc. 

© B. A. Prakash (2011)
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Any questions?
91

Models Effective
Strength (s)

Threshold
(tipping 

point)

SIS, SIR, 

SIRS, SEIR s = λ .   

s = 1SIV, SEIV s = λ .   

(~H.I.V.)
s = λ .   2121 VVISI
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