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Motivation
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One liner: “Contagions spreading over a network”

+ Disease Propagation

* Blog Cascades .
» Viral Marketing o3t
» Influence Propagation %',‘;,.t
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Reading Material
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» Primary: Chapter 21, Networks, Crowds, and Markets:
Reasoning about a Highly Connected World.

by David Easley and Jon Kleinberg. Cambridge University Press, 2010.

http://www.cs.cornell.edu/home/kleinber/networks-book/networks-book-ch21.pdf

» Additional: The Mathematics of Infectious Diseases
by H. W. Hethcote. SIAM Review Volume 42, Issue 4, 2000.

http://www.maths.usyd.edu.au/u/ma opulations/hethcote.pdf
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Underlying phenomenon
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 Contagions over a network

Human contact- Biological Viruses
networks e.g. HIN1
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Contagions over networks
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» examples...
Computer Computer Viruses
Networks e.g.trojans

Contagions over a network

7N\

(6)
Nt

» examples...

Influence networks Products




Contagions over a network

7\
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» examples...

Influence networks Ideas/Rumors/Facts

Two fundamental questions

Strong

Qu:
Threshold?

example (static graph)

_Threshold? infection




Questions

g———a
&

Q2:
. Immunization

Which nodes
to remove?

8

SARS costs 700+ lives; $40+ Bn; HiN1 costs Mexico $2.3bn
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This lecture...

©

« Focus on propagation processes on
arbitrary static and dynamic networks
and temporal evolution of data.

~Theory:
~Tipping point? Footprint? Etc.
©Algorithms:

~Which nodes to immunize? Etc.

©B. A. Prakash (2011)

Lecture: Overview
Theory: Observations and Algorithms: Tools
Results

Propagation
Models on
StaticGraphs

Propagation
Models on
Dynamic
Graphs
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Lecture: Overview
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Theory: Observations and Algorithms: Tools
Results

Propagation
Models on
StaticGraphs

Immunization

. Tipping point? .
Eeoseaton ppsp Algorithms
Dynamic
Graphs
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Outline

e Introduction

» Terminology

e Theory

e Algorithms

* Open Problem
e Conclusion
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“SIR” model (mumps-like)

» Each node in the graph is in one of three states
© Susceptible (i.e. healthy)
© Infected '
© Removed (i.e. can’t get infected again) },@'

D ~Prob. 8 7

o
©

K)
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Terminology: continued

N
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¢ Other virus models
SIS : susceptible-infected-susceptible, flu-like
SIRS : temporary immunity, like pertussis
SEIR : mumps-like with virus incubation
(E = Exposed)
» Underlying contact-network — ‘who-can-infect-
whom’

Nodes (people/computers)
Edges (links between nodes)

Related Work
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e oertmresi | All are about either:

A.Barrat, M. Barthélemy, and A. Vespignani. Dynamical Processes on Complex
Networks. Cambridge University Press, 2010.

F.M. Bass. Anew
Science, 15(5):215-227,1969. > S d
. Chakrabart, Y. Wang, C. W, . Leskovee, and . Faloutsos. pidemic tructure
thresholdsin real networks. ACMTISSEC, 10(4), 2008.

D. Easley andJ. Kleinberg, Networks, Crowds, and Markets: Reasoning Abouta tOpOlOgleS (Chques s

Highly Connected World. Cambridge University Press, 2010.
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H. W. Hethcote. The mathematics of infectiousdiseases. SIAM Review, 42, 2000.

HW. J.A.Yorke lissig i

Springer Lecture Notes in Biomathematics, 46, 1984. . .
A »Specificvirus
models

Privacy,1993.
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e Terminology

» Theory

e Algorithms

* Open Problem

e Conclusion




Lecture: Overview

Theory: Observations and Algorithms: Tools
Results

Propagation
Models on (TS1) G2-threshold theorem

StaticGraphs

(AS1) Full Symmetric Static
Immunization (NetShield)

Propagation

Models on (TD1) Thresholds
Dynamic

Graphs

(AD1) Full Symmetric Dynamic
Immunization
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Lecture: Overview

Theory: Observations and Algorithms: Tools
Results

Propagation

\ e
LB (TS1) G2-threshold | “" immsston tetshe)

StaticGraphs
theorem

Propagation

Models on (TD1) Thresholds
Dynamic

Graphs

(AD1) Full Symmetric Dynamic
Immunization
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(TS1) Static Graphs: G2-threshold Theorem

Problem Statement =8
8 g,

* Given:
O0An undirected unweighted graph G, and

OA virus propagation model (VPM) and its
parameters (e.g., fand & for SIR)

¢ Find:
OA condition for virus extinction/invasion

In Prakash+ICDM 2011. Also posted as arXiv:1004.0060
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Intuitively
» Answer should depend on:
© Graph
© Virus Propagation Model (VPM)

* But how??
© Graph — average degree? max. degree? diameter?
© VPM — which parameters?
© How to combine — linear? quadratic? exponential?

©B. A. Prakash (2011)

Static Graphs: G2-threshold Theorem

E—

» Main result (informal):

Thresholds for some models

;

o s E

* s = effective strength 7 -

e s < 1: below threshold v
Models Effective Threshold

Strength (s) (tipping point)
SIS, SIR, SIRS, ., (8
SEIR s=4. [5}
Ss=1
SIV, SEIV s=A.[ by ]
S(y+0)

SI,I,V,V,(H.LV.) s= . [Mj

e ! 2 v2(8+vl)
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Largest Eigenvalue (A)

&
« “Official” definition:
Let A be the adjacency matrix. Then A is the root

with the largest magnitude of the characteristic
polynomial of A [det(A—xI)].

* Yeah, doesn’t give too much intuition! ©

Largest Eigenvalue (A)

7\

(a)Chain (b)Star (c)Clique

(l\(v()/\)
| Dbettercomeetvty —>highers |

Largest Eigenvalue (A)

(@)Chain(A =1.73) (b)Star(\ =2) (c)Clique(A =4)

(@1
” better connectivity — higher A
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Largest Eigenvalue (A)
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A=2 A=vVN A=N-1
(a)Chain (b)Star (c)Clique

Examples: Simulations - SIR

7\
(29)
\
g . SIR Infected (log-log) 5 SIR Threshold
_%10 2 ~undert 15X10 ' '
10% L]
< e /
b 4
G 107 Eq
: o 8 5 Our Threshold,
o10 T = l
gwfw 10' 102 S R ' 10°
R Time ticks Effective Strength
(a) Infection profile (b) “Take-off"” plot
PORTLAND graph: synthetic population,
31 million links, 6 million nodes
Examples: Simulations - SIRS
7\
)
E’ . SIRS Infected (log-log) 5 SIRS Threshold
o . 10
R S—", 1 15
g ~under2
£ B £,
g . £
10 3
: P 82 Our Threshold
o™ = =
wao" 10" 102 10”7 10" 10° 10" 10°
2 Time ticks Effective Strength
(a) Infection profile (b) “Take-off” plot

PORTLAND graph: synthetic population,
31 million links, 6 million nodes
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So how did we do that?

9/15/2011

Some trivia

>first person in the US
identified as a healthy
carrier of the pathogen
associated with typhoid
fever.

» infected some 53 people,
over the course of her career
as a cook!

»>forcibly quarantined by
public health authorities

“ ” P v SICR —‘
Two Infec‘ged States? witha
(33) carrier

(33)
"

Asymtomatic Symptomatic

11



SEIR:

Two “Infected” States? / mumps-like
AN\ with virus
(l\ié\vj/‘l incubation
Exposed and Infected and
not infectious infectious

)

9/15/2011

Our generalized model

7\
a5)

STV

Endoge;&

((
35

kyky pk -
(S'TV*?)
Endogenous
Transitions
(/f/f\/v H\,&/\/\/L
¢ Suscephble S Infected 7

Caused by
Vlgﬂant\ neighbors

‘ ExogenousE 0 é
Transitions ! 'k

Unaided Transitions \°° /

transitions

Our generalized model

AN\
(l/j 3 6)

STV

N

(STV™)

('//S:l:cephble E E_A Infected 7
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Our generalized model
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* * fol * N\
STV (STV™)
Endogenous
Transitions
f/f\/\r \\l\, \/\/L
H Suscephble \ Infected 7

Exogenous

AP0 0 5
Transnlons g w
Endoge;& Vlgﬂant\

Transitions \0 ° /

Special case

(17:;‘\\\1
N\
Endogenous
Transitions
f/f\/ ~ H\,&/\/\/L
H Suscephble \ Infected 7

Exogenous

ANNR>0 0 g
Transitions ! w
Endoge;& Vlgﬂant\

Transitions \0 ° /

Special case

7

(39)
&

N H\,&/\/\/L
' Susceptible 4 Infected 7

\3 ,

PPN r
/ Vlgﬂant\ /

13



Special case: SIR

©B. A. Prakash (2011)

Special case: SIR (permanent immunity)

Endogenous
Transitions
RN S
< Infected %
4

/" Susceptible -

Exogenous

Teansitions e

ﬂ Endogenous ¥/ Vigilant

Transitions Q ) S*Izv*

©B. A. Prakash (2011)
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Another special case: SEIV

Transitions

¢ E == exposed latent state e

/" Susceptible - < Infected Zz{

Exogenous

no “sneezes” 2
Teansitions gl

P %

- Endogenous N/ Visilant
Qf':) Transitions . Q . S*IZV*
i

infectious

SEIV: itself generalizes
A * SIR (mumps)

. oo ., * SIS (flu-like)

Projenipgigaantcination’ | | SIRS (pertussis)

* SEIR (varicella) etc.

©B. A. Prakash (2011)
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Special case: H.I.V.

AN\
(43)
\ Endogenous
SI I V V ___  Tensitions
1t2 V1 Va e,,(-vr\ﬁ iy,
N s
Treansitions gl
B1 .
& Endogenous ¥/ Vigilant . .
Transitions . @@ 9
B2 90/ S'I°V
Vi
V2

Multiple Infectious,
Vigilant states

©B. A. Prakash (2011)

9/15/2011

Models and more models

N\
(44)
7
SIR Mumps
SIS Flu
SIRS Pertussis
SEIR Varicella
SICR Tuberculosis
MSIR Measles
SIV Sensor
Stability
SL,I,V,V, H.L.V.
.......... —
©B. A. Prakash (2011)
Proof: Main Idea
(45)
— N — —
*ViewasaNLDS P, = G(P)

© discrete time
© non-linear dynamical system (NLDS)

Probability vector
Specifies the state of
the system at time t

©B. A. Prakash (2011)
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Proof: Main Idea

7N
(46)
=

N
*ViewasaNLDS P, ; = G(F)
discrete time
non-linear dynamical system (NLDS)

p"t g . Rm]\f s RmN

Non-linear

size function
mN x 1 Explicitly gives the
evolution of system

Proof: Main Idea
@)
)

N\
*ViewasaNLDS P, = G(F;)
discrete time
non-linear dynamical system (NLDS)

» Threshold > Stability of NLDS

P NN
(A) Unstable (B) Stable (C) Neutral (at threshold)
Special case: SIR
(@1
D 3N 3N =
Pryif§|  9:R" =R P
Size 1 — Ps‘n+1 = Pbu.r(,.r(])
3Nx1 Pim = Pull=Goll) + (1= )P €| !
B Privei = 0Ppic+ Pris e B
N
\ C: () = probability that node )
i F not attacked by
any of its infectious
NielSors

9/15/2011
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Fixed Point

A~

( \1
(49)
\&Y

P N

= Shlul e

N

size
anx1 [

NLDS

o | State when no node is
infected
Stability for SIR
(@1
Py E . E
Stable Unstable
under threshold above threshold

~—" Model

Structure

-4

NLDS

N stability

(A) Unstable (B)Stable (C) Neutral (at threshold)

See paper for
full proof

Model-based

- 9< i

Graph-based
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Lecture: Overview

Theory: Observations and Algorithms: Tools
Results

Propagation
Models on (TS1) G2-threshold Theorem

StaticGraphs

(AS1) Full Symmetric Static
Immunization (NetShield)

ﬂ:g;ﬁ?,?.m (AD1) Full Symmetric Dynamic
¢ (TD1) Thresholds Imunigation
Dynamic

Graphs

©B. A. Prakash (2011)
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(TD1) Dynamic Graphs: Thresholds

» What about time-varying dynamic graphs?

©B. A. Prakash (2011)

(TD1) Dynamic Graphs: Thresholds

DAY Alternating behaviors

(e.g., work)

adjacency 8
matrix

©B. A. Prakash (2011)
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Alternating Behaviors

N\
J

)
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€

NIGHT
(e.g., home)

o o8
/,

adjacency 8

matrix \ / I
.Jb
- Blg

)
Model Description
(o)
& Healthy
» SIS model
recoveryrate § Prob. 8
infectionrate 3 b

Infected
* Set of T arbitrary graphs {Ai. As ... Ay}
A,

N

Ay
}N }N , weekend....
l_Y_} \—7—,
N

Problem Statement

A\
(57)

N

# above
Infected
elow

. oG . time
Find, a condition under which
virus will die out exponentially quickly

regardless of initial infection condition

19
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Should we,

A\
(58)
N

» Add the adjacency matrices? [ |

e Multiply? | =@

* “Superimpose”? B

« or some other crazy combination?

©B. A. Prakash (2011)

Our result: Threshold

A\
(59)
NtV

» Informally, NO epidemic if

o

Single number!
Largest eigenvalue of

eig (S) =

the “system matrix ” (dfn. next)

In Prakash+, ECML-PKDD 2010

. NO epidemicif
- eig(S)=)g<1 )
. s=[;S, —®

1+ A,

Recovery rate Infection rate Adjacency matrices

Healthy A, A
day night
s
Infected @ N

20



Simulation Examples

7\

(@1
« Synthetic
100 nodes

A - Clique A, - Chain

* MIT Reality Mining
104 mobile devices
September 2004 — June 2005
12-hr adjacency matrices
A (day) A, (night)

9/15/2011

Infection-profile

log(fractioninfected) (@’
Synthetic MIT Reality

| AN

Number of Infections (il teady State)

;E = NO EPIDEMIC | / NO EPIDEMIC )

Max

AT
£ o0\ WM ’\t»}‘lreshold [
Vv g
§ l ' 'A'\VW‘\“\ z Y [nthreshold
wi| YIBELOW  [—=== L ‘dL in
| ‘threshold Z BELOW
‘ threshold || | ‘
Time
Footprint @, B ) .
(¢ infected @ Take of plots
“steady uﬁ;\)
state”) =
Synthetic MIT Reality
o i) EPIDEMIC
Our /EPIDEMIC 7 our T ’
threshold | “ threshold |

)\H ; S (log scale)
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Outline

( \6'4/0
e Introduction
e Terminology
e Theory
e Algorithms
* Open Problem
e Conclusion

9/15/2011
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Lecture: Overview

A\
(65)
Nt

Algorithms: Tools

Theory: Observations and
Results

Propagation .
Models on (AS1) Full Symmetric

StaticGraphs Static Immunization

(NetShield)

(TS1) G2-threshold Theorem

Propagation
Models on

(TD1) Thresholds (AD1) Full Symmetric Dynamic

Immunization

©B. A. Prakash (2011)

(AS1): Full Static Immunization

A\
(66)

Given: a graph A, virus prvop. model and budget k;

Find: k ‘best’ nodes for immunization (removal).
2 = ?
-,
g

In Tong, Prakash+ICDM 2010

22
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Challenges
7
(67)

N\

Q1 (Metric) How to measure the ‘shield-
value’ for a set of nodes (S)?

Q2 (Algorithm) How to find a set of k
nodes with highest ‘shield-value’?

Proposed vulnerability
7
(68)
N\

“Safe” “Vulnerable” “Deadly”
(a)Chain(A =1.73) (b)Star(A\ =2) ()Clique(A =4)

Increasing A
Increasing vulnerability

A1: Eigen-Drop: an ideal shield value

Eigen—])lj\op,(kﬁs )

761

Original Graph Without {2, 6}

23



(Q2) - Direct Algorithm too expensive!

7\

(70)
Nt

» Immunize k nodes which maximize A A

S = argmax A4
» Combinatorial!
» Complexity: N
plexity: O( (%) - m)
Example:

1,000 nodes, with 10,000 edges

It takes 0.01 seconds to compute 4

It takes 2,615 years to find 5-best nodes!

A2: Our Solution

7N\

(7

)
N\

e Part1
Approximate Eigen-drop (AA)
» Not enough!
e Part2
Greedily pick best node at each step

e Algorithm: NetShield
O(nk?+m)

Our Solution: Part 1
(ff;)

N\

* Approximate Eigen-drop (A A)

e AL=SV(S)= Y 2ua(i)® = Y Alijju(iul))

€S i.jES

Result using Matrix perturbation theo

u(i) == ‘eigenscore’ |
~~ pagerank(i)

9/15/2011
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| Details |
,,,,, > 2xu(i)? = Y A(ijulia(l)
€S i,jES

\ J | J

P1: noJe importance P2: s!zt diversity

5 1
Original Graph Selectby P1  Select by P1+P2

Done?
(@1
« S = argmax SV(S)
« Still combinatorial
« Complexity: O((}) - k%)

Example:

1,000 nodes, with 10,000 edges
It takes 0.00001 seconds to compute SV(S)
It takes 3 months to find 5-best nodes

Our Solution: Part 2: NetShield
)

>
N\

» We prove that:

SV(S) is sub-modular (& monotone non-
decreasing) l

Corollary: Greedy algorithm works

1. NetShield is near-optimal (w.r.t. max SV S)
2. NetShield is O(nk?*+m)

» NetShield: Greedily add best node at each
step

Footnote: near-optimal means SV(S Y1) 5 = (1-1/e)8VA

25
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Experiment: Immunization quality

(76)
=~

Log(fraction

of
infected
nodes)

e
_» PageRank

‘ 001

Lower Acquaintance
Is NetShield Figs (=HITS)
better ooo 1000 2000 3000 AEIEIEI 5000 6000 7000  BOOOD 9000 10000 Time
NetShield Speed
()
>10 days @
*
. 10,000,000x
Time 10000 | :0 rgmaxA A > »
1
10,000, 1 '™ ]
¢, argmax SV(S) ',
1,000 ;|
100 4’} Lower
' is
10| 1 .
. + NetShield better
o.1seconds .
{0 1 " v
Mo eAA
0.0t 5 10 15 20 .
# of vaccines

Lecture: Overview

A\
(78)
N

Algorithms: Tools

Theory: Observations and
Results

(AS1) Full Symmetric Static
Immunization (NetShield)

Propagation
Models on (TS1) G2-threshold Theorem
StaticGraphs

(AD1) Full Symmetric

P i
ropagation (TD1) Thresholds
Dynamic
Immunization

©B. A. Prakash (2011)
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(AD1) Full Dynamic Immunization

(79)
* Given:
Set of T arbitrary graphs {A. Ay .... Ay}

A1 AQ
}N }N , weekend.....
N

N
e Find:
k ‘best’ nodes to immunize (remove)

In Prakash+ ECML-PKDD 2010

9/15/2011

(AD1) Full Dynamic Immunization

A\
(80)
N\

g A Ao
e Our solution Matrix day night

Product
Recall theorem — . .

~~~~~

* Goal: max eigendrop A A

AN - >\before — >\after
» No competing policy for comparison
» We propose and evaluate many policies

(©B. A. Prakash (2011)

Performance of Policies

AN\
(81)
Nt
Footprint after k=6 immunizations
34 Lower
32 is better
30
28 -
26 -
24
20 = Footprint
20 |

3 & & & &
T S e

MIT Reality

Mining

27



Lower d -
is better

5 Foes,
o
@@ Optimal

o
o ® creeays /
[ Greedy.pavoa Optimal
'V ¥ Greedy-AavgA . ;
++ Greed\z-Dmvang Greedy-S
g 3 O g 0 T
k # vaccines

©B. A. Prakash (2011)
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Outline

A\
(83)
Nt

e Introduction

e Terminology

e Theory

e Algorithms

» Open problem
e Conclusion

©B. A. Prakash (2011)

Periodicities in SIRS (temp. immunity)

AN\
(84)
N
Fraction ‘ . .
of 04 1
Infected o2f ]
ol (=02 ]
02 WW\J\/\\/\/\/W\'MW
00 t t f
02 " )
%5200 5300 5400 5500 5600
Time .Z::‘;:;;sWorld
c = # “shortcuts (WS Model)

Easley + Kleinberg 2010
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Periodicities in SIRS (temp. immunity)
©)
Nt
Fraction
of 04}
Infected o2}
0.0
04
02
0.0
0.4
02
5200 °
Thiie Small-World
¢ = # “shortcuts” Graphs
(WS Model)

9/15/2011

Easley + Kleinberg 2010

Periodicities in SIRS (temp. immunity)

A\
(86)
\

¢ Questions (for a class project? ©)
© Can we observe it on arbitrary graphs?
© What properties of graphs cause it?
© What SIRS parameters determine it?

o

A SN N N
02 wmmvwfmv'\/\www
o =
MM il
5“200 5300 5400 5500 5600

©B. A. Prakash (2011)

Outline

A\
(87)
Nt

e Introduction

e Terminology

e Theory

e Algorithms

* Open Problem
« Conclusion

©B. A. Prakash (2011)
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Conclusion

7\

9/15/2011

(88)
NtV

» Threshold depends (for any VPM)
on A (largest eigenvalue) of suitable matrix
aconstant C,,
 Use A) to guide immunization policies
fast, scalable, provably near-optimal algorithms

Conclusion

77\

(&

D
* Real, compelling applications in diverse
domains
* Lots of interesting research problems!
we saw only some of them
multiple competing viruses? (Iphone vs andriod)
information diffusion (Twitter) etc. etc.
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Any questions?

sl S —

o

point) /

SIS, SIR, o
sws s *17H{5) £ Theory
SIV,SEIV s3] (sﬁia;) s=1 | “2 Our Threshold
SLLV,V, [,s +p,s] .
(~H.LV) A o

A )
Effective Strength of Virus ()

Tools

©B. A. Prakash (2011)
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