

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (Problem #2, #3)

15-826

(c) C. Faloutsos (2011)

CMU SCS

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size (#, after dup. elimination)

AAABABACAB

Voc. Size = $3 = |\{A, B, C\}|$

15-826

(c) C. Faloutsos (2011)

Thanks to

• Chris Palmer (Vivisimo)

15-826

(c) C. Faloutsos (2011)

CMU SC

Problem #2

- · Given a multiset
- compute approximate high-end histogram = hot-list query = (*k* most common words, and their counts)

AAABABACABDDDDD

(for k=2: A#: 6 D#: 5)

(c) C. Faloutsos (2011)

MU SCS

Problem #3

- Given two documents
- compute quickly their similarity (#common words/ #total-words) == Jaccard coefficient

15-826

(c) C. Faloutsos (2011)

CMU SCS

Problem #1

- Given a multiset (eg., words in a document)
- find the vocabulary size V (#, after dup. elimination)
- using space O(V), or O(log(V))

(Q1: Applications?)

(Q2: How would you solve it?)

15-826

(c) C. Faloutsos (2011)

-	
-	

C. Faloutsos 15-826

Random Hash Functions

- Can use linear hash functions. Pick random (a_i, b_i) and then the hash function is:
 - $-lhash_i(x) = a_i * x + b_i$
- Gives uniform distribution over the bits
- To make this exponential, define $- hash_i(x) = least zero bit in <math>lhash_i(x)$
- Hash functions easy to create and fast to use

(c) C. Faloutsos (2011)

Conclusions

- Want to measure # of distinct elements
- Approach #1: (Flajolet-Martin)
 - Map elements to random bits
 - Keep bitmask of bits
 - Estimate is $O(2^b)$ for least zero-bit b
- Approach #2: (Cohen)
 - Create random permutation of elements
 - Keep least element seen
 - Estimate is: O(1/le) for least rank le

15-826

(c) C. Faloutsos (2011)

25

CMU SCS

Approximate counting

- Flajolet-Martin (and Cohen) vocabulary
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools

15-826

(c) C. Faloutsos (2011)

26

CMU SCS

Fast Approximation of the "neighborhood" Function for Massive Graphs

Christopher R. Palmer Phillip B. Gibbons Christos Faloutsos

KDD 2001

CMU SC

Motivation

- What is the diameter of the Web?
- What is the effective diameter of the Web?
- Are the telephone caller-callee graphs for the U.S. similar to the ones in Europe?
- Is the citation graph for physics different from the one for computer science?
- Are users in India further away from the core of the Internet than those in the U.S.?

15-826

(c) C. Faloutsos (2011)

28

CMU SCS

Proposed Tool: neighborhood

Given graph G=(V,E) N(h) = # pairs within h hops or less = **neighborhood function**

15-826

(c) C. Faloutsos (2011)

29

30

CMU SO

Proposed Tool: neighborhood

Given graph G=(V,E)

N(h) = # pairs within h hops or less

= neighborhood function

N(u,h) = # neighbors of node u, within h hops or less

15-826

(c) C. Faloutsos (2011)

Requirements (for massive graphs) • Error guarantees • Fast: (and must scale linearly with graph) • Low storage requirements: massive graphs! • Adapts to available memory • Sequential scans of the edges • Also estimates individual neighborhood functions |S(u,h)| - These are actually quite useful for mining

C. Faloutsos 15-826

How would you compute it?

- · Repeated matrix multiply
 - Too slow $O(n^{2.38})$ at the very least
 - Too much memory $O(n^2)$
- · Breadth-first search

FOR each node u DO

bf-search to compute S(u,h) for each h

- Best known exact solution!
- We will use this as a reference
- Approximations? Only 1 that we know of which we will discuss when we evaluate it.

(c) C. Faloutsos (2011)

Intuition

- · Guess what we'll use?
 - Approximate Counting!
- Use very simple algorithm:

FOR each node u DO $S(u,0) = \{ (u,u) \}$

initialize to self-only FOR h = 1 to diameter of G DO

FOR each node u DO S(u,h) = S(u,h-1) can reach same things FOR each edge (u,v) in G DO and add one more step $S(u,h) = S(u,h) \ U \{ (u,v') : (v,v') \in S(v,h-1) \}$

15-826

(c) C. Faloutsos (2011)

CMU SCS			
		Trace	
h=0	h=1		Q_Q
{(1,1)}	{(1,1)}		2 4
{(2,2)}	{(2,2)}		
{(3,3)}	{(3,3)}		
{(4,4)}	{(4,4)}		
15-826		(c) C. Faloutsos (2011)	38

Intuition # (distinct) neighbors of u, • Guess what we'll use? within h hops - Approximate Counting! • Use very simple algorithm: initialize to self-only FOR each node u DO $S(u,0) = \{(u,u)\}$ FOR h = 1 to diameter of G DO FOR each node u DO S(u,h) = S(u,h-1) and add one more step can reach same things FOR each edge (u,v) in G DO $S(u,h) = S(u,h) \ U \ \{ \ (u,v') : (v,v') \in S(v,h\text{-}1) \ \}$ Too slow and requires too much memory • Replace expensive set ops with bit ops 15-826 (c) C. Faloutsos (2011)

CMU SC

Experiments – What are the Qs?

- What scheme gives the best results?
 - Us? A Cohen based scheme? Sampling?
- How big a value of **k** do we need?
 - Will try 32, 64 and 128
- Are the results sensitive to *r*?
- How fast is our approximation?
- How well does this performance scale?

15-826

(c) C. Faloutsos (2011)

50

**	CMUSCS
	We are much faster than BF

Data	BF (Exact)	ANF	Speedup
Uniform	92	0.5	184x
Cora	6	1.5	4x
80-20	680	1.5	453x
Router	1,200	2.75	436x

15-826 (c) C. Faloutsos (2011) 53

55

CMU SO

Outline

- Flajolet-Martin (and Cohen) vocabulary size
- Application: Approximate Neighborhood function (ANF)
 - putting ANF to work
- other, powerful approximate counting tools

15-826

(c) C. Faloutsos (2011)

CMUSCS

The Connectivity and Fault-Tolerance of the Internet Topology

Christopher R. Palmer

Georgos Siganos (UC Riverside) Michalis Faloutsos (UC Riverside) Phillip B. Gibbons (Bell-Labs) Christos Faloutsos

NRDM 2001

CMU SCS

Understanding the Internet

- Large (285K nodes, 430K edges)
 - Hard to process using existing tools
- · Yet, Internet very important in daily life
- We want to
 - Identify interesting nodes (routers)
 - Want to understand network failures
 - Identify errors / suspicious routers

15-826

(c) C. Faloutsos (2011)

× 5

CMU SCS

Outline

- Flajolet-Martin (and Cohen) vocabulary size
- Application: Approximate Neighborhood function (ANF)
 - putting ANF to work
 - 1B-node graph (YahooWeb)
- other, powerful approximate counting tools

15-826

(c) C. Faloutsos (2011)

62

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs **O(N**2)** space and up to O(N**3) time **prohibitive** (N~1B)
- Our HADI: linear on E (~10B)
 - Near-linear scalability wrt # machines
- Several optimizations -> 5x faster

CMU SC

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools (**Problem #2**, #3)

15-826

(c) C. Faloutsos (2011)

CMU

Problem #2

- · Given a multiset
- compute approximate high-end histogram = hot-list query = (*k* most common words, and their counts)

AAABABACABDDDDD

(for *k*=2:

A#: 6

D#: 5)

(c) C. Faloutsos (2011)

71

Applications?

• Best selling products
• most common words
• most busy IP destinations/sources (DoS attacks)
• summarization / synopses of datasets
• high-end histograms for DBMS query optimization

82

Hot-list queries - idea

- Biased coin what are the Head/Tail prob.?
- A: depends on count(weakest)
- and the new item ('D'), if it wins, it gets the count of the item it displaced.

15-826

(c) C. Faloutsos (2011)

CMU SCS

Hot-list queries - idea

• See [Gibbons+Matias 98] for proofs

15-826

(c) C. Faloutsos (2011)

itsos (2011)

CMU SC

Outline

- Flajolet-Martin (and Cohen) vocabulary size (Problem #1)
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools Problem #2,
 - Problem #3

15-826

(c) C. Faloutsos (2011)

85

(c) C. Faloutsos (2011)

15-826

Problem #3*
Given a query document q
and many other documents
compute quickly the k nearest neighbors of q, using the Jaccard coefficient
D1: {A, B, C} q: {A, C, D, W}
D2: {A, D, F, G} ...
15-826 (c) C. Faloutsos (2011) 86

Applications?

- Set comparisons eg.,
 snail-mail address (set of trigrams)
- search engines 'similar pages'
- social networks: people with many joint friends (facebook recommendations)

15-826

(c) C. Faloutsos (2011)

CMU SCS

Problem #3'

- Given a query document q
- and many other documents
- compute quickly the *k* nearest neighbors of *q*, using the Jaccard coefficient
- Q: how to extract a fixed set of numerical features, to index on?

15-826

(c) C. Faloutsos (2011)

89

88

CMU SCS

Answer

• Approximation / hashing - Cohen:

15-826

(c) C. Faloutsos (2011)

C. Faloutsos 15-826

Conclusions

- Approximations can achieve the impossible!
- MF and ANF for neighborhood function
- hot-lists
- Jaccard coeff. / 'similar pages'

15-826

(c) C. Faloutsos (2011)

CMU SC

References (cont'd)

Aristides Gionis, Dimitrios Gunopulos, Nikos Koudas, Efficient and Tunable Similar Set Retrieval, ACM SIGMOD 2001, Santa Barbara, California

M. Faloutsos, P. Faloutsos, and C. Faloutsos. *On power-law relationships for the internet topology*. SIGCOMM, 1999.

15-826

(c) C. Faloutsos (2011)

MU SCS

References (cont'd)

- P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. *Journal of Computer and System Sciences*, 31:182-209, 1985.
- C. R. Palmer and C. Faloutsos. *Density biased sampling: an improved method for data mining and cluster*. In SIGMOD, 2000.
- C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast approximation of the "neighborhood" function for massive graphs. KDD 2002

15-826

(c) C. Faloutsos (2011)

101

100

CMU SC

References (cont'd)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C. Faloutsos. The connectivity and fault-tolerance of the internet topology. NRDM 2001.

15-826

(c) C. Faloutsos (2011)