
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {cmuscs }}$	
Outline	
Goal: 'Find similar / interesting things' - Intro to DB - Indexing - similarity search Data Mining	
15.826 (e) C. Falutios (2011)	2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Basic idea (Flajolet-Martin)

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- How many bits? $\log V+$ small constant
- What hash functions?

15-826

\qquad
\qquad
\qquad
\qquad

Approximate counting

- Flajolet-Martin (and Cohen) - vocabulary size
- Application: Approximate Neighborhood function (ANF)
- other, powerful approximate counting tools \qquad
\qquad
Fast Approximation of the
"neighborhood" Function for Massive
Graphs
Christopher R. Palmer
Phillip B. Gibbons
Christos Faloutsos
KDD 2001

\qquad

Proposed Tool: neighborhood

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Given graph $G=(V, E)$
$N(h)=$ \# pairs within h hops or less $=$ neighborhood function

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

33^{3} cmuscs
 How would you compute it?

- Repeated matrix multiply
- Too slow $O\left(n^{2.38}\right)$ at the very least
- Too much memory $O\left(n^{2}\right)$
- Breadth-first search

FOR each node u DO
bf-search to compute $S(u, h)$ for each h

- Best known exact solution!
- We will use this as a reference
- Approximations? Only 1 that we know of which we will discuss when we evaluate it.

15-826
(c) C. Faloutsos (2011)

34

$3^{\text {Intuition }}$

- Guess what we'll use?
- Approximate Counting!
- Use very simple algorithm:

FOR each node u DO $S(u, 0)=\{(u, u)\}$
initialize to self-only
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

FOR $h=1$ to diameter of $G \mathrm{DO}$
FOR each node u DO $S(u, h)=S(u, h-1)$ can reach same things FOR each edge (u, v) in G DO and add one more step $S(u, h)=S(u, h) U\left\{\left(u, v^{\prime}\right):\left(v, v^{\prime}\right) \in S(v, h-l)\right\}$

826
\qquad
\qquad家
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

- Too slow and requires too much memory \qquad
- Replace expensive set ops with bit ops

15-826
(c) C. Faloutsos (2011)

44

ANF Algorithm \#1

FOR each node, }u,\textrm{DO
FOR each node, }u,\textrm{DO
M(u,0)= concatenation of \boldsymbol{k}\mathrm{ bitmasks of length }\operatorname{log}n+\boldsymbol{r}
M(u,0)= concatenation of \boldsymbol{k}\mathrm{ bitmasks of length }\operatorname{log}n+\boldsymbol{r}
each bitmask has 1 bit set (exp. distribution)
each bitmask has 1 bit set (exp. distribution)
DONE
DONE
FOR }h=1\mathrm{ to diameter of G DO
FOR }h=1\mathrm{ to diameter of G DO
FOR each node, u, DO M(u,h)=M(u,h-1)
FOR each node, u, DO M(u,h)=M(u,h-1)
FOR each edge (u,v) in G DO
FOR each edge (u,v) in G DO
M(u,h)=(M(u,h) OR M(v,h-l))
M(u,h)=(M(u,h) OR M(v,h-l))
Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) /.77351/ (1+.
Estimate N(h) = Sum(N(u,h)) = Sum 2b(u) /.77351/ (1+.
31/k)
31/k)
where b(u)= average least zero bit in M(u,it)
where b(u)= average least zero bit in M(u,it)
TONE
TONE
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Experiments - What are the Qs?

- What scheme gives the best results?
- Us? A Cohen based scheme? Sampling?
- How big a value of \boldsymbol{k} do we need? \qquad - Will try 32, 64 and 128
- Are the results sensitive to \boldsymbol{r} ?
- How fast is our approximation?
- How well does this performance scale?

15-826
(c) C. Faloutsos (2011) 50

What is the data?							
Name	\#nodes	\#edges	Max. degree	Avg. degree	Eff. Diam.	Orient.	Real?
cornell	844	1,647	131	1.95	8	Dir.	Y
cycle	1,000	1,000	2	2.00	450	Undir.	N
grid	10,000	19,800	4	3.96	89	Undir.	N
uniform	65,378	199,996	20	6.12	7	Undir.	N
cora	127,083	330,198	457	2.60	28	Dir.	Y
80-20	166,946	449,832	723	5.39	8	Undir.	N
router	284,805	430,342	1,978	3.15	10	Undir.	Y
15-826			(c) C. Falo	sos (2011)			51

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

The Connectivity and FaultTolerance of the Internet Topology

Christopher R. Palmer
Georgos Siganos (UC Riverside)
Michalis Faloutsos (UC Riverside)
Phillip B. Gibbons (Bell-Labs)
Christos Faloutsos

NRDM 2001

\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}(\mathbf{N} * * 2)$ space and up to $\mathrm{O}\left(\mathrm{N}^{*} * 3\right)$ time - prohibitive $(\mathrm{N} \sim 1 \mathrm{~B})$
- Our HADI: linear on E (~10B)
- Near-linear scalability wrt \# machines \qquad
- Several optimizations -> 5x faster

15-826
(c) C. Faloutsos (2011)
\qquad

YahooWeb graph ($120 \mathrm{~Gb}, 1.4 \mathrm{~B}$ nodes, 6.6 B edges) - Largest publicly available graph ever studied.

$$
\begin{array}{lll}
15-826 & \text { (c) C. Faloutsos (2011) } & 64
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

YahooWeb graph ($120 \mathrm{~Gb}, 1.4 \mathrm{~B}$ nodes, 6.6 B edges)
\qquad

- Largest publicly available graph ever studied.

15-826
(c) C. Faloutsos (2011)

65

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

YahooWeb graph ($120 \mathrm{~Gb}, 1.4 \mathrm{~B}$ nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores 15-826 (c) C. Faloutsos (2011) \qquad

Radius Plot of GCC of YahooWeb.

15-826
(c) C. Faloutsos (2011)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad c) C. Faloutsos (201)
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

3^{MnHscs}
 Problem \#2

- Given a multiset
- compute approximate high-end histogram $=$ hot-list query $=(k$ most common words, and their counts)
AAABABACABDDDDD
(for $k=2$:
A\#: 6
D\#: 5)
15-826

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

C. Faloutsos

\qquad

Applications?

\qquad

- Best selling products
- most common words
- most busy IP destinations/sources (DoS \qquad attacks)
- summarization / synopses of datasets \qquad
- high-end histograms for DBMS query optimization
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
s.
\rightarrow -
\qquad
\qquad

\qquad
$3^{3} \mathrm{cmuscs}$

Hot-list queries - idea

- Keep the (approx.) k best so far, plus counts
- for a new item, if it is in the hot list
- increment its count
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

- Given a query document q
- and many other documents
- compute quickly the k nearest neighbors of \qquad q, using the Jaccard coefficient

$$
\begin{aligned}
& \text { D1: }\{\mathrm{A}, \mathrm{~B}, \mathrm{C}\} \\
& \mathrm{D} 2:\{\mathrm{A}, \mathrm{D}, \mathrm{~F}, \mathrm{G}\}
\end{aligned} \quad \mathrm{q}:\{\mathrm{A}, \mathrm{C}, \mathrm{D}, \mathrm{~W}\}
$$

15-826

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Problem \#3'

- Given a query document q
- and many other documents
- compute quickly the k nearest neighbors of \qquad q, using the Jaccard coefficient
- Q: how to extract a fixed set of numerical features, to index on?
\qquad

15-826
(c) C. Faloutsos (2011)

89

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

- MF and ANF for neighborhood function
- hot-lists \qquad
\qquad
\qquad
\qquad
References
E. Cohen. Size-estimation framework with applications to transitive
closure and reachability. Journal of Computer and System Sciences,
55(3):441-453, December 1997. http://www.research.att.com/
~edith/Papers/tcest.ps.Z
Phillip B. Gibbons, Yossi Matias, New sampling-based summary
statistics for improving approximate query answers, ACM
SIGMOD, 1998 Seattle, Washington, pp 331 -342

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

${ }^{3} \quad$ References (cont'd)

P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31:182-209, 1985
C. R. Palmer and C. Faloutsos. Density biased sampling: an improved method for data mining and cluster. In SIGMOD, 2000.
C. R. Palmer, P. B. Gibbons and C. Faloutsos. Fast approximation of the "neighborhood" function for massive
\qquad graphs. KDD 2002
References (cont' d)

C. R. Palmer, G. Siganos, M. Faloutsos, P. B. Gibbons and C.
Faloutsos. The connectivity and fault-tolerance of the
internet topology. NRDM 2001.

$15-826$

(c) C. Faloutsos (2011)

