15-826: Multimedia Databases and

 Data MiningLecture \#26: Graph mining - patterns
Christos Faloutsos

Carnegie Nellon

Must-read Material

- Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, On Power-Law Relationships of the Internet Topology, SIGCOMM 1999.
- R. Albert, H. Jeong, and A.-L. Barabasi, Diameter of the World Wide Web Nature, 401, 130-131 (1999).
- Reka Albert and Albert-Laszlo Barabasi Statistical mechanics of complex networks, Reviews of Modern Physics, 74, 47 (2002)
- Jure Leskovec, Jon Kleinberg, Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005, Chicago, IL, USA

Carnegie Mellon

Must-read Material (cont'd)

- D. Chakrabarti and C. Faloutsos, Graph Mining: Laws, Generators and Algorithms, in ACM Computing Surveys, 38 (1), 2006
- J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, in PKDD 2005, Porto, Portugal

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cannegievelolon

Cannegievelelon

Graphs - why should we care?

- IR: bi-partite graphs (doc-terms)

- web: hyper-text graph \qquad
\qquad
\qquad
\qquad

Carnegie Nellon

Graphs - why should we care?

- 'viral' marketing
\qquad
- web-log ('blog') news propagation \qquad
- computer network security: email/IP traffic and anomaly detection \qquad
-

Outline

- Introduction - Motivation
\qquad
- Problem\#1: Patterns in graphs \qquad
- Static graphs
- Weighted graphs \qquad
- Time evolving graphs
- Problem\#2: Tools \qquad
- Problem\#3: Scalability
- Conclusions
\qquad

15-826

\qquad

Faloutsos

Carnegie Mellon

Graph mining

- Are real graphs random?

Carnegie Nellon

Laws and patterns

- Are real graphs random?
- A: NO!!
- Diameter
- in- and out- degree distributions
- other (surprising) patterns
- So, let's look at the data

CarnegieNellon

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]
internet domains

Faloutsos

Carnegie Nellon

Solution\# S. 1

- Power law in the degree distribution [SIGCOMM99]

15-826
(c) 2011 C. Faloutsos

16

Carnegie Nellon

Solution\# S.2: Eigen Exponent E

```
    Eigenvalue
```



```
- A2: power law in the eigenvalues of the adjacency matrix
15-826
(c) 2011 C. Faloutsos
17
```


Carnegie Mellon

Solution\# S.2: Eigen Exponent \boldsymbol{E}
Eigenvalue

- [Mihail, Papadimitriou '02]: slope is $1 / 2$ of rank exponent
15-826

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

And numerous more

- \# of sexual contacts
- Income [Pareto] -'80-20 distribution'
- Duration of downloads [Bestavros+]
- Duration of UNIX jobs ('mice and elephants’)
- Size of files of a user
\qquad
\qquad
\qquad
\qquad
- ...
- 'Black swans'

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
- Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

15-826

Carnegievelolon

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles \qquad
\qquad
\qquad
\qquad

Carnegie Mellon

Solution\# S.3: Triangle 'Laws'

- Real social networks have a lot of triangles
- Friends of friends are friends
- Any patterns?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Nellon

Triangle Law: Computations
[Tsourakakis ICDM 2008]

But: triangles are expensive to compute
(3-way join; several approx. algos)
Q: Can we do that quickly?

Carnegie. Melon

Triangle Law: Computations
[Tsourakakis ICDM 2008] \qquad
\qquad
But: triangles are expensive to compute
(3-way join; several approx. algos) \qquad
Q: Can we do that quickly?
A: Yes!
\#triangles $=\mathbf{1 / 6 ~ S u m ~ (~} \lambda_{\mathrm{i}}{ }^{3}$)
(and, because of skewness (S2), we only need the top few eigenvalues!

Triangle Law: Computations

[Tsourakakis ICDM 2008] Wikipedia graph 2006-Nov-04
\qquad

\qquad
\qquad
\qquad
\qquad
$15-826$
$1000 x+$ speed - up, $>90 \%$ accuracy
31
\qquad
\qquad

Carnegie Mellon

Triangle counting for large graphs?

Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
15-826
(c) 2011 C. Faloutsos

32

Carnegie Mellon

Triangle counting for large graphs?

\qquad
\qquad
\qquad
\qquad
Anomalous nodes in Twitter(~ 3 billion edges)
[U Kang, Brendan Meeder, +, PAKDD'11]
15-826

Faloutsos

Carnegie Nellon

Any other 'laws'?

Yes!
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie. Nellon

Any other 'laws'?

Yes!

- Small diameter (\sim constant!) -
- six degrees of separation / 'Kevin Bacon' - small worlds [Watts and Strogatz]

Carnegie. Melon

Any other 'laws'?

- Bow-tie, for the web [Kumar+ '99]
- IN, SCC, OUT, 'tendrils'
- disconnected components

\qquad

Faloutsos

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Carnegie Nellon

EigenSpokes

B. Aditya Prakash, Mukund Seshadri, Ashwin Sridharan, Sridhar Machiraju and Christos Faloutsos: EigenSpokes: Surprising
\qquad Patterns and Scalable Community Chipping in Large Graphs, PAKDD 2010, Hyderabad, India, 21-24 June 2010.

Faloutsos

Carnegievelelon

EigenSpokes

- Eigenvectors of adjacency matrix \qquad
- equivalent to singular vectors
(symmetric, undirected graph) \qquad
\qquad
\qquad

15-826

EigenSpokes

- Eigenvectors of adjacency matrix \qquad
- equivalent to singular vectors
(symmetric, undirected graph) \qquad

Carnegievelolon

EigenSpokes

\qquad

- Eigenvectors of adjacency matrix \qquad
- equivalent to singular vectors
(symmetric, undirected graph) \qquad
\qquad

EigenSpokes

- Eigenvectors of adjacency matrix \qquad
- equivalent to singular vectors
(symmetric, undirected graph) \qquad

\qquad
\qquad
\qquad
\qquad

Carnegie Nellon

EigenSpokes

- Eigenvectors of adjacency matrix \qquad
- equivalent to singular vectors
(symmetric, undirected graph) \qquad

CarnegieNellon

EigenSpokes

- EE plot: $2^{\text {nd }}$ Principal component - Scatter plot of u2 scores of u1 vs u2	
- One would expect	$\stackrel{\circ}{\circ}$
- Many points @ origin	
- A few scattered \sim randomly	u1
	$1^{\text {st }}$ Principal component
15-826 (c) 2011 C. Faloutsos	45

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

EigenSpokes

- EE plot:
\qquad
- Scatter plot of scores of u1 vs u2
- One would expect
- Many points @ origin
- Af \quad tered
~ 1 ic n ly

15-826
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegeienclelon

EigenSpokes - pervasiveness

- Present in mobile social graph
- across time and space
- Patent citation graph ${ }^{3_{02}^{02}}{ }^{02}$ \qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

Carnegie Nellon

EigenSpokes - explanation

Near-cliques, or near-

bipartite-cores, loosely
\qquad connected

Carnegie Nellon

\qquad
\qquad

CarnegieNellon

EigenSpokes - explanation

Near-cliques, or near-
 bipartite-cores, loosely connected

So what?

- Extract nodes with high scores
- high connectivity
- Good "communities"

15-826
(c) 2011 C. Faloutsos ${ }^{V_{7}}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Nellon

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs \qquad
- Static graphs
- degree, diameter, eigen,
- triangles
- cliques
$\Rightarrow \quad-$ Weighted graphs
- Time evolving graphs
- Problem\#2: Tools

15-826

Cannegievelelon

Observations on weighted graphs?

- A: yes - even more 'laws'!

\qquad
\qquad
\qquad
M. McGlohon, L. Akoglu, and C. Faloutsos
\qquad Components: Patterns and a Generator. SIG-KDD 2008

15-826
(c) 2011 C. Faloutsos

Faloutsos

Carnegicickelon

Observation W.1: Fortification
Q: How do the weights
of nodes relate to degree?

Carnegie Nellon

Observation W.1: Fortification

More donors,
more \$?

Carnegievelolon

Observation W.1: fortification:

Snapshot Power Law

- Weight: super-linear on in-degree
- exponent 'iw': $1.01<\mathrm{iw}<1.26$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegiovelelon

Problem: Time evolution

- with Jure Leskovec (CMU -> Stanford)

- and Jon Kleinberg (Cornell sabb. @ CMU)

Cannegievelolon

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints at slowly growing diameter:
- diameter $\sim \mathrm{O}(\log \mathrm{N})$
- diameter $\sim \mathrm{O}(\log \log \mathrm{N})$$\stackrel{\sim}{3}$
- What is happening in real data?

Carnegie Mellon

T. 1 Evolution of the Diameter

- Prior work on Power Law graphs hints
\qquad at slowly growing diameter:

\qquad
- What is happening in real data?
- Diameter shrinks over time

Carnegie Mellon

T. 1 Diameter - "Patents"

- Patent citation network
- 25 years of data
- @1999
- 2.9 M nodes
- 16.5 M edges

826

CarnegicMellon

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t}) \ldots$ edges at time t
- Suppose that

$$
\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})
$$

- Q: what is your guess for \qquad $\mathrm{E}(\mathrm{t}+1)=? 2$ * $\mathrm{E}(\mathrm{t})$

Carnegie Mellon

T. 2 Temporal Evolution of the Graphs

- $\mathrm{N}(\mathrm{t})$... nodes at time t
- $\mathrm{E}(\mathrm{t})$... edges at time t
- Suppose that
$\mathrm{N}(\mathrm{t}+1)=2 * \mathrm{~N}(\mathrm{t})$
- Q: what is your guess for $\mathrm{E}(\mathrm{t}+1)={ }^{2}$ * $\mathrm{E}(\mathrm{t})$
- A: over-doubled!
- But obeying the "'Densification Power Law’

15-826

Carnegie Mellon

T. 2 Densification - Patent Citations

- Citations among patents granted @1999 - 2.9 M nodes - 16.5 M edges - Each year is a datapoint			$\begin{aligned} & 1.66 \\ & \underbrace{1999} \\ & x^{166} R^{2}=0 \end{aligned}$
	${ }^{10^{5}} 10^{\text {b }}$	$\frac{10^{\circ}}{\substack{100 \\ \text { Number of nodes }}}$	
15-826	(c) 2011 C . Faloutsos		65

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
san
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

More on Time-evolving graphs

Canregievellon
M. McGlohon, L. Akoglu, and C. Faloutsos

Weighted Graphs and Disconnected
Components: Patterns and a Generator.
SIG-KDD 2008
${ }^{15.826}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Carnegie Nellon

[Gelling Point]

- Most real graphs display a gelling point
- After gelling point, they exhibit typical behavior. This is marked by a spike in diameter.

Carnegie Mellon

Observation T.3: NLCC behavior
Q: How do NLCC's emerge and join with
\qquad the GCC?
(" ${ }^{\prime}$ NLCC" ${ }^{\prime}=$ non-largest conn. components)
\qquad

- Do they continue to grow in size?
- or do they shrink? \qquad
- or stabilize?

Faloutsos

Carnegie Mellon

Observation T.3: NLCC behavior
Q: How do NLCC's emerge and join with the GCC?
(" ${ }^{\prime} \mathrm{NLCC} "$ " $=$ non-largest conn. components)

- Do they continue to grow in size?
- or do they shrink?
- or stabilize?

Carnegie. Nellon

Observation T.3: NLCC behavior
Q: How do NLCC's emerge and join with
\qquad the GCC?
(" ${ }^{\prime}$ NLCC" $"=$ non-largest conn. components)
YES - Do they continue to grow in size?
YES - or do they shrink? \qquad YES - or stabilize?

Carnegie Nellon

Observation T.3: NLCC behavior

- After the gelling point, the GCC takes off, but NLCC's remain \sim constant (actually, oscillate).
\qquad
\qquad
\qquad
\qquad
\qquad

15-826

72

Faloutsos

Carnegie Nellon

Timing for Blogs

- with Mary McGlohon (CMU->Google)
- Jure Leskovec (CMU->Stanford)
\qquad
- Natalie Glance (now at Google)
- Mat Hurst (now at MSR)
[SDM'07]

Carnegie Mellon

Carnegie Nellon

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cannegievelelon

T.5: duration of phonecalls

Surprising Patterns for the Call Duration Distribution of Mobile Phone Users

Pedro O. S. Vaz de Melo, Leman
Akoglu, Christos Faloutsos, Antonio \qquad
A. F. Loureiro

PKDD 2010 \qquad

Faloutsos

Carnegie Nellon

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Vellon

Carnegie Nellon

'TLaC: Lazy Contractor'

- The longer a task (phonecall) has taken,
- The even longer it will take

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

Carnegie Mellon

Data Description

- Data from a private mobile operator of a large
\qquad city
- 4 months of data
- 3.1 million users
- more than 1 billion phone records
- Over 96% of 'talkative' users obeyed a TLAC
\qquad distribution ('talkative': >30 calls)

Carnegie Nellon

Carnegie Nellon

Outline

- Introduction - Motivation
\qquad
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
$\Rightarrow \quad$ - OddBall (anomaly detection) \qquad
- Belief Propagation
- Immunization \qquad
- Problem\#3: Scalability
- Conclusions \qquad

Carnegie Mellon

OddBall: Spotting Anomalies in Weighted Graphs

Leman Akoglu, Mary McGlohon, Christos
Faloutsos
Carnegie Mellon University
School of Computer Science

PAKDD 2010, Hyderabad, India

Carnegie Nellor

Main idea

For each node,

- extract 'ego-net' (=1-step-away neighbors)
- Extract features (\#edges, total weight, etc etc)
- Compare with the rest of the population

Carnegie Mellon

What is an egonet?

Faloutsos

\qquad

Carnegie Nellon

Near-Clique/Star

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Cannegievelolon

Near-Clique/Star

(c) 2011 C. Faloutsos

Faloutsos

Carnegie Mellon

Near-Clique/Star

91

Carnegie Nellon

Near-Clique/Star

5-826
(c) 2011 C. Faloutsos

92

Carnegie Nellon

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- OddBall (anomaly detection)
\Rightarrow - Belief Propagation
- Immunization
- Problem\#3: Scalability
- Conclusions

15-826
\qquad

Carnegie Nellon

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Faloutsos

Carnegie Nellon

Popular press

And less desirable attention:

- E-mail from 'Belgium police' ('copy of your code?')

15-826
(c) 2011 C. Faloutsos 98

Carnegie Nellon

Outline

- Introduction - Motivation
\qquad
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- OddBall (anomaly detection) \qquad
\Rightarrow - Belief Propagation - antivirus app
- Immunization \qquad
- Problem\#3: Scalability
- Conclusions \qquad
\qquad

Carnegie Mellon

Polonium：Tera－Scale Graph Mining and Inference for Malware Detection
\qquad SDM 2011，Mesa，Arizona Software Engineer

Polonium：The Data

晨的部部	60＋terabytes of data anonymously
	contributed by participants of worldwide
	Norton Community Watch program
	50＋million machines
	900＋million executable files
	Constructed a machine－file bipartite graph (0.2 TB+)
	1 billion nodes（machines and files）
\square^{\cdots} 号	37 billion edges
$15-826$	（c）2011 C．Faloutsos 101

Carnegie Mellon

Polonium：Key Ideas

－Use Belief Propagation to propagate domain knowledge in machine－file graph to detect malware
－Use＂guilt－by－association＂（i．e．，homophily） \qquad
－E．g．，files that appear on machines with many bad files are more likely to be bad
－Scalability：handles 37 billion－edge graph

Carnegie Mellon

Polonium: One-Interaction Results

Carnegie Mellon

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- OddBall (anomaly detection) \qquad
- Belief propagation
\Rightarrow - Immunization \qquad
- Problem\#3: Scalability -PEGASUS
- Conclusions
\qquad

15-826

Carnegie Mellon

Immunization and epidemic thresholds

- Q1: which nodes to immunize?
- Q2: will a virus vanish, or will it create an epidemic?

Carnegie Nellon

\qquad
\qquad
\qquad

Carnegie Nellon

Q1: Immunization:

-Given
-a network,
-k vaccines, and
-the virus details
-Which nodes to immunize?

Carnegie Nellor

-Given

Q1: Immunization:

-a network,
-k vaccines, and
-the virus details
-Which nodes to immunize?

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie. Nellon

 Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR’)
- Pertussis (finite-length immunity, ‘SIRS')

Carnegie Nellon

Q2: will a virus take over?

- Flu-like virus (no immunity, 'SIS')
- Mumps (life-time immunity, 'SIR')
- Pertussis (finite-length immunity, 'SIRS')
β : attack prob
δ : heal prob
A: depends on connectivity (avg degree? Max degree? variance? Something else?
15-826
(c) 2011 C. Faloutsos

\qquad
\qquad
\qquad

Epidemic threshold τ

What should τ depend on?

- avg. degree? and/or highest degree?
- and/or variance of degree?
- and/or third moment of degree?
- and/or diameter?

15-826
(c) 2011 C. Faloutsos

112
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegicovelon

Epidemic threshold

- [Theorem] We have no epidemic, if

$$
\beta / \delta<\tau=1 / \lambda_{1, A}
$$

Carnegie Nellon

Epidemic threshold

- [Theorem] We have no epidemic, if
\qquad
\qquad
\qquad

Proof: [Wang+03] (for SIS=flu only)

A2: will a virus take over?

- For all typical virus propagation models (flu, mumps, pertussis, HIV, etc)
- The only connectivity measure that matters, is

$1 / \lambda_{1}$

the first eigenvalue of the adj. matrix
[Prakash+, '10, arxiv]

15-826
(c) 2011 C. Faloutsos

115

Carnegie Nellon

Thresholds for some models

- $s=$ effective strength
- $s<1$: below threshold

Models	Effective Strength (s)
Threshold (tipping point)	

$$
\begin{array}{ll}
\text { SIS, SIR, SIRS, } & s=\lambda \cdot\left(\frac{\beta}{\delta}\right) \\
\text { SEIR } & s=1 \\
\text { SIV, SEIV } & s=\lambda \cdot\left(\frac{\beta \gamma}{\delta(\gamma+\theta)}\right)
\end{array}
$$

$$
\mathrm{SI}_{1} \mathrm{I}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \text { (H.I.V.) } \quad s=\lambda \cdot\left(\frac{\beta_{1} v_{2}+\beta_{2} \varepsilon}{v_{2}\left(\varepsilon+v_{1}\right)}\right)
$$

Carnegievelolon

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

Carnegie. Nellon

Q1: Immunization:

-Given

- a network,
-k vaccines, and
-the virus details •the virus details
•Which nodes to immunize? for any virus!

A: immunize the ones that
Max eigen-drop $\Delta \lambda$

Carnegie Nellon

Outline

- Introduction - Motivation
\qquad
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- OddBall (anomaly detection) \qquad
- Belief propagation
- Immunization \qquad
- Problem\#3: Scalability -PEGASUS
- Conclusions

Scalability

- Google: $>450,000$ processors in clusters of ~ 2000 processors each [Barroso, Dean, Hölzle, "Web Search for a Planet: The Google Cluster Architecture" IEEE Micro \qquad 2003]
- Yahoo: 5Pb of data [Fayyad, KDD’07] \qquad
- Problem: machine failures, on a daily basis
- How to parallelize data mining tasks, then?
- A: map/reduce - hadoop (open-source clone) http://hadoop.apache.org/

约
$15-826$
(c) 2011 C. Faloutsos

Carnegie Nellon

Outline - Algorithms \& results

\Rightarrow| | Centralized | Hadoop/
 PEGASUS |
| :--- | :---: | :---: |
| Degree Distr. | old | old |
| Pagerank | old | old |
| Diameter/ANF | old | HERE |
| Conn. Comp | old | HERE |
| Triangles | done | HERE |
| Visualization | started | |

Carnegie Mellon

HADI for diameter estimation

- Radius Plots for Mining Tera-byte Scale Graphs U Kang, Charalampos Tsourakakis, Ana Paula Appel, Christos Faloutsos, Jure Leskovec, SDM'10
- Naively: diameter needs $\mathbf{O}(\mathbf{N} * * 2)$ space and up to $\mathrm{O}\left(\mathrm{N}^{* *} 3\right)$ time - prohibitive ($\mathrm{N} \sim 1 \mathrm{~B}$)
- Our HADI: linear on E ($\sim 10 \mathrm{~B}$)
- Near-linear scalability wrt \# machines \qquad
- Several optimizations -> 5x faster

15-826
(c) 2011 C. Faloutsos

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Largest publicly available graph ever studied.

15-826
(c) 2011 C. Faloutsos

125

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- Largest publicly available graph ever studied.
${ }^{15-826}$
(c) 2011 C. Faloutsos

126

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Mellon

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality (?!)
$15-826 \quad$ (c) 2011 C. Faloutsos

Faloutsos

Carnegie Nellon

Radius Plot of GCC of YahooWeb.

15-826
(c) 2011 C. Faloutsos

130

Carnegie Nellon

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges)

- effective diameter: surprisingly small.
- Multi-modality: probably mixture of cores .
$\begin{array}{ll}15-826 & \text { (c) } 2011 \text { C. Faloutsos }\end{array}$

Carnegievelolon

YahooWeb graph (120Gb, 1.4B nodes, 6.6 B edges) - effective diameter: surprisingly small.

- Multi-modality: probably mixture of cores . 15:826 (c) 2011 C . Faloutos
\qquad

Faloutsos

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Mellon

Running time - Kronecker and Erdos-Renyi \qquad Graphs with billions edges.

Cannegievelolon

Outline - Algorithms \& results

\Rightarrow| | Centralized | Hadoop/
 PEGASUS |
| :--- | :---: | :---: |
| Degree Distr. | old | old |
| Pagerank | old | old |
| Diameter/ANF | old | HERE |
| Conn. Comp | old | HERE |
| Triangles | | HERE |
| Visualization | started | |

Generalized Iterated Matrix Vector Multiplication (GIMV)

PEGASUS: A Peta-Scale Graph Mining System - Implementation and Observations. U Kang, Charalampos E. Tsourakakis, and Christos Faloutsos.
(ICDM) 2009, Miami, Florida, USA.
Best Application Paper (runner-up).

Carnegie Nellon

Generalized Iterated Matrix details $<$

Vector Multiplication (GIMV)

- PageRank
- proximity (RWR)
- Diameter
- Connected components
- (eigenvectors,
- Belief Prop.
- ...)

5-826
(c) 2011 C. Faloutsos

Matrix - vector
Multiplication (iterated)
\qquad

Carnegiciovelon

Example: GIM-V At Work

- Connected Components - 4 observations:

Count

$13-826$
\qquad

Example: GIM-V At Work

- Connected Components

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegie Mellon

Example: GIM-V At Work

- Connected Components

Carnegie Nellon

Example: GIM-V At Work

- Connected Components

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example: GIM-V At Work

- Connected Components

Carnegie Mellon

Example: GIM-V At Work

- Connected Components
Count

143

Carnegie Mellon

GIM-V At Work

- Connected Components over Time
- LinkedIn: 7.5M nodes and 58M edges

\qquad

Carnegie Nellon

Outline

- Introduction - Motivation
- Problem\#1: Patterns in graphs
- Problem\#2: Tools
- Problem\#3: Scalability
\Rightarrow - Conclusions

Carnegie Nellon

OVERALL CONCLUSIONS low level:

- Several new patterns (fortification, shrinking diameter, triangle-laws, conn. components, etc)
- New tools:
- anomaly detection (OddBall), belief propagation, immunization
- Scalability: PEGASUS / hadoop
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Carnegievelolon

OVERALL CONCLUSIONS high level

- BIG DATA: Large datasets reveal patterns/ outliers that are invisible otherwise \qquad
\qquad
\qquad
\qquad

Faloutsos

Carnegie Mellon

References

- Leman Akoglu, Christos Faloutsos: RTG: A Recursive Realistic Graph Generator Using Random Typing. ECML/PKDD (1) 2009: 13-28
- Deepayan Chakrabarti, Christos Faloutsos: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1): (2006)

Carnegic Mellon

References

- Deepayan Chakrabarti, Yang Wang, Chenxi Wang, Jure Leskovec, Christos Faloutsos: Epidemic thresholds in real networks. ACM Trans. Inf. Syst. Secur. 10(4): (2008)
- Deepayan Chakrabarti, Jure Leskovec, Christos Faloutsos, Samuel Madden, Carlos Guestrin, Michalis Faloutsos: Information Survival Threshold in Sensor and P2P Networks. INFOCOM 2007: 1316-1324

Carnegie Mellon

References

- Christos Faloutsos, Tamara G. Kolda, Jimeng Sun:
\qquad Mining large graphs and streams using matrix and tensor tools. Tutorial, SIGMOD Conference 2007: \qquad 1174

Faloutsos

Carnegie Mellon

References

- T. G. Kolda and J. Sun. Scalable Tensor Decompositions for Multi-aspect Data Mining. In: ICDM 2008, pp. 363-372, December 2008.

Carnegic Mellon

References

- Jure Leskovec, Jon Kleinberg and Christos Faloutsos Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, KDD 2005 (Best Research paper award).
- Jure Leskovec, Deepayan Chakrabarti, Jon M. Kleinberg, Christos Faloutsos: Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication. PKDD 2005: 133-145

Carnegie Mellon

References

- Jimeng Sun, Yinglian Xie, Hui Zhang, Christos
\qquad Faloutsos. Less is More: Compact Matrix Decomposition for Large Sparse Graphs, SDM, Minneapolis, Minnesota, Apr 2007.
- Jimeng Sun, Spiros Papadimitriou, Philip S. Yu, and Christos Faloutsos, GraphScope: Parameterfree Mining of Large Time-evolving Graphs ACM SIGKDD Conference, San Jose, CA, August 2007

Faloutsos

Carnegie Nellon

References

- Jimeng Sun, Dacheng Tao, Christos Faloutsos: Beyond streams and graphs: dynamic tensor analysis. KDD 2006: 374-383

References

- Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan, Fast Random Walk with Restart and Its Applications, ICDM 2006, Hong Kong.
- Hanghang Tong, Christos Faloutsos, Center-Piece Subgraphs: Problem Definition and Fast Solutions, KDD 2006, Philadelphia, PA

References

- Hanghang Tong, Christos Faloutsos, Brian Gallagher, Tina Eliassi-Rad: Fast best-effort pattern matching in large attributed graphs.
\qquad KDD 2007: 737-746

