
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$3^{\text {Mowss }}$ Must-read Material

- AutoSplit: Fast and Scalable Discovery of Hidden Variables in Stream and Multimedia Databases, Jia-Yu Pan, Hiroyuki Kitagawa, Christos Faloutsos and Masafumi Hamamoto

PAKDD 2004, Sydney, Australia

$33^{\text {cnuscs }}$	
Outline	
- Motivation	
- Formulation	
- PCA and ICA	
- Example applications	
- Conclusion	
${ }_{15-826} \quad$ (e) C. Flautsos and J YY Pan (2011)	*

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

- Motivation
- Formulation
- PCA and ICA
- Example applications
- Conclusion \qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Patterns in motion capture data \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

3 cmuscs
 Topic discovery on text streams

- Data: CNN headline news (Jan.-Jun. 1998)
- Documents of 10 topics in one single text \qquad stream
- Documents are sorted by date/time \qquad
- Subsequent documents may have different topics

\qquad
\qquad

${ }^{9}{ }^{\text {cnuscs }}$
 Topic discovery on text streams

- Data: CNN headline news (Jan.-Jun. 1998)
- Documents of 10 topics in one single text \qquad stream
- FIND: the document boundaries \qquad
- AND: the terms of each topic

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Step 3: Evaluate the patterns

ID	True Topic					
l	Sgt. Gene Mckinney is on trial for alleged sexual misconduct					
2	A bomb explodes in a Birmingham, AL abortion clinic					
3	The Cattle Industry in Texas sues Oprah Winfrey for defaming beef					
4	New impotency drug Viagra is approved for use					
5	Diane Zamora is convicted of helping to murder her lover's girlfriend					
ID	Sorted word list					
A	mckinne	sergeant	sexual	major	armi	
B	bomb	rudolph	clinic	atlanta	birmingham	
C	winfrei	beef	texa	oprah	cattl	
D	viagra	drug	Impot	pill	doctor	
E	zamora	graham	kill	former	jone	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
AutoSplit's topics are better than PCA. \#26 \qquad

\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
CMUscs
Companies related to hidden variable 1

$\mathrm{B}_{1, \mathrm{j}}$				
Highest			Lowest	
Caterpillar	0.938512	AT\&T	0.021885	
Boeing	0.911120	WalMart	0.624570	
MMM	0.906542	Intel	0.638010	
Coca Cola	0.903858	Home Depot	0.647774	
Du Pont	0.900317	Hewlett-Packard	0.658768	

> All companies are affected by the "general trend" variable (with weights $0.6 \sim 0.9$), except AT\&T.

\qquad

Tech company

Companies affected by the "internet bubble" variable (with weights $0.5 \sim 0.6$) are tech-related. \qquad
Other companies are un-related (weights <0.15).
$15-826$
(c) C. Faloutsos and J-Y Pan (2011) \#36

\qquad
\qquad

- Motivation
- Formulation \qquad
- PCA and ICA

Example applications

- Find topics in documents
- Hidden variables in stock prices
- Visual vocabulary for retinal images
\qquad
\qquad
\qquad
Conclusion
\qquad

3 cmuscs
 Conclusion

- ICA: more flexible than PCA in finding patterns.
- Many applications
- Find topics and "vocabulary" for images \qquad
- Find hidden variables in time series (e.g., stock prices)
- Blind source separation

\qquad
\qquad

References

- Aapo Hyvärinen, Juha Karhunen, Erkki Oja: Independent Component Analysis, John Wiley \& Sons, 2001
Software
- Open source software: 'fastICA'
http://research.ics.tkk.fi/ica/fastica/
- Or 'autosplit':

www.cs.cmu.edu/~jypan/software/autosplit_cmu.tar.gz

15-826

