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15-826: Multimedia Databases  
and Data Mining 

Lecture #21: Tensor decompositions 
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Must-read Material 
•  Tamara G. Kolda and Brett W. Bader. 

Tensor decompositions and applications. 
Technical Report SAND2007-6702, Sandia 
National Laboratories, Albuquerque, NM 
and Livermore, CA, November 2007  
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Outline 
Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 

•  primary key indexing 
•  secondary key / multi-key indexing 
•  spatial access methods 
•  fractals 
•  text 
•  Singular Value Decomposition (SVD) 

-  … 
-  Tensors 

•  multimedia 
•  ... 
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Most of foils by 
•  Dr. Tamara Kolda (Sandia N.L.) 
•  csmr.ca.sandia.gov/~tgkolda  

•  Dr. Jimeng Sun (CMU -> IBM)   
•   www.cs.cmu.edu/~jimeng  

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/ 
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Outline 

•  Motivation - Definitions 
•  Tensor tools 
•  Case studies 
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Motivation 0: Why “matrix”? 

•  Why matrices are important? 
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Examples of Matrices:  
Graph - social network 

John Peter Mary Nick ... 
John 
Peter 
Mary 
Nick 

... 

0 11 22 55 ... 
5  0  6 7 ... 

... ... ... ... ... 

... ... ... ... ... 

... ... ... ... ... 
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Examples of Matrices: 
 cloud of n-d points 

chol# blood# age .. ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 Market basket  

•  market basket as in Association Rules 

milk bread choc. wine ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 Documents and terms 

Paper#1 
Paper#2 
Paper#3 
Paper#4 

data mining classif. tree ... 

... 
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Examples of Matrices: 
Authors and terms 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 
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Examples of Matrices: 
 sensor-ids and time-ticks 

t1 
t2 
t3 
t4 

temp1 temp2 humid. pressure ... 

... 
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Motivation: Why tensors? 

•  Q: what is a tensor? 
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Motivation 2: Why tensor? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’07 
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Motivation 2: Why tensor? 

•  A: N-D generalization of matrix: 

data mining classif. tree ... 
John 
Peter 
Mary 
Nick 

... 

KDD’06 

KDD’05 

KDD’07 
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Tensors are useful for 3 or more 
modes  

Terminology: ‘mode’ (or ‘aspect’): 

data mining classif. tree ... 

Mode (== aspect) #1 

Mode#2 

Mode#3 
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Motivating Applications  
•  Why matrices are important? 
•  Why tensors are useful?  

– P1: social networks 
– P2: web mining 
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P1: Social network analysis 
•  Traditionally, people focus on static networks and 

find community structures 
•  We plan to monitor the change of the community 

structure over time 
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P2: Web graph mining 

•  How to order the importance of web pages? 
– Kleinberg’s algorithm HITS 
– PageRank 
– Tensor extension on HITS (TOPHITS) 

•  context-sensitive hypergraph analysis  
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Outline 

•  Motivation – 
Definitions 

•  Tensor tools 
•  Case studies 

•  Tensor Basics 
•  Tucker 
•  PARAFAC 
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

Σ 
m 

n 

U 

VT 

≈ 	
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Reminder: SVD 

– Best rank-k approximation in L2 

A m 

n 

≈ 	

 + 

σ1u1°v1 σ2u2°v2 
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Goal: extension to >=3 modes 

~ 

I x R 
K x 

R 
A 

B 
J x R 

C 
R x R x R 

I x J x K 

+…+ = 
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Main points: 

•  2 major types of tensor decompositions: 
PARAFAC and Tucker 

•  both can be solved with ``alternating least 
squares’’ (ALS) 

•  Details follow – we start with terminology: 
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A tensor is a multidimensional array 

xijk I 

J 

K 

An I x J x K tensor Column (Mode-1)  
Fibers 

Row (Mode-2) 
Fibers 

Tube (Mode-3) 
Fibers 

Horizontal Slices Lateral Slices Frontal Slices 
3rd order tensor 

mode 1 has dimension I 
mode 2 has dimension J 
mode 3 has dimension K 

Note: Tutorial focus is 
on 3rd order, but 
everything can be 

extended to higher 
orders. 
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Matricization: Converting a Tensor to 
a Matrix 

(i,j,k) (i′,j′) 

(i′,j′) (i,j,k) 

Matricize 
(unfolding) 

Reverse  
Matricize 

X(n): The mode-n fibers are 
rearranged to be the columns 
of a matrix  

5   7 
6   8 1   3 

2   4 Vecto
riza

tion 
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Tensor Mode-n Multiplication 

•  Tensor Times Matrix •  Tensor Times Vector 

Multiply each  
row (mode-2) 

fiber by B 

Compute the dot 
product of a and 

each column 
(mode-1) fiber 
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Pictorial View of Mode-n Matrix 
Multiplication 

 

 

Mode-1 multiplication 
(frontal slices) 

Mode-2 multiplication 
(lateral slices) 

Mode-3 multiplication 
(horizontal slices) 

 
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Mode-n product Example 

•  Tensor times a matrix 

Time 

Lo
ca

ti
on

 T
yp

e 
Time 

×Time 

Lo
ca

ti
on

 T
yp

e 

Clusters Cl
us

te
rs
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Mode-n product Example 

•  Tensor times a vector 

Time 

Lo
ca

ti
on

 T
yp

e 

×Time 

Lo
ca

ti
on

 T
yp

e 

Ti
m

e 

details 
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Outer, Kronecker, & 
Khatri-Rao Products 

3-Way Outer Product 

= 

Review: Matrix Kronecker Product 

M x N P x Q 

MP x NQ 

Matrix Khatri-Rao Product 

M x R N x R MN x R 

Observe: For two vectors a and b, a ± b and a - b have the same 
elements, but one is shaped into a matrix and the other into a vector. 

Rank-1 Tensor 

details 
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= 
U 

I x R 

V 
J x R 

W
 K x 

R 

R x R x R 

Specially Structured Tensors 
•  Tucker Tensor •  Kruskal Tensor 

I x J x K 

= 
U 

I x R 

V 
J x S 

W
 K x 

T 

R x S x T 

I x J x K 

Our  
Notation 

Our  
Notation 

+…+ = 

u1 uR 

v1 

w1 

vR 

wR 

“core” 
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Specially Structured Tensors 
•  Tucker Tensor •  Kruskal Tensor 

In matrix form: In matrix form: 

details 
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Tucker Decomposition - intuition 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

•  author x keyword x conference 
•  A: author x author-group 
•  B: keyword x keyword-group 
•  C: conf. x conf-group 
•   : how groups relate to each other 
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Intuition behind core tensor 

•  2-d case: co-clustering 
•  [Dhillon et al. Information-Theoretic Co-

clustering, KDD’03] 
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m 

m 

n 

n l 

k 

k 
l 

eg, terms x documents 
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term x 

term-group 

doc x 
doc group 

term group x 
doc. group 

med. terms 

cs terms 
common terms 

med. doc 
cs doc 
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Tucker Decomposition 

•  Proposed by Tucker (1966) 
•  AKA: Three-mode factor analysis, three-mode 

PCA, orthogonal array decomposition 
•  A, B, and C generally assumed to be orthonormal 

(generally assume they have full column rank) 
•      is not diagonal  
•  Not unique 

Recall the equations for 
converting a tensor to a matrix 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

Given A, B, C, the optimal core is: 
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Solving for Tucker 

Given A, B, C orthonormal, the optimal core is: 

Minimize  
s.t. A,B,C orthonormal 

Eliminate the core to get: 

fixed maximize this 
If B & C are fixed, then we can solve for A as follows: 

Tensor norm is the square 
root of the sum of all the 

elements squared 

Optimal A is R left leading singular vectors for  

I x J x K 

~ 
A 

I x R 
B 

J x S 

C K x 
T 

R x S x T 

details 
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 Higher Order SVD (HO-SVD) 

De Lathauwer, De Moor, & Vandewalle, SIMAX, 1980  

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

Not optimal, but 
often used to 

initialize Tucker-
ALS algorithm. 

(Observe connection to Tucker1) 

details 
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Tucker-Alternating Least Squares (ALS) 

•  Initialize  
–  Choose R, S, T 
–  Calculate A, B, C via HO-SVD 

•  Until converged do… 
–  A = R leading left singular 

vectors of   X(1)(C   B) 
–  B = S leading left singular 

vectors of X(2)(C   A) 
–  C = T leading left singular 

vectors of X(3)(B   A) 
•  Solve for core:  

Kroonenberg & De Leeuw, Psychometrika, 1980  

I x J x K 

= 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

Successively solve for each component (A,B,C). 
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Tucker in Not Unique 

Tucker decomposition is not unique. Let Y be 
an RxR orthogonal matrix. Then… 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

details 
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Outline 

•  Motivation – 
Definitions 

•  Tensor tools 
•  Case studies 

•  Tensor Basics 
•  Tucker 
•  PARAFAC 
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CANDECOMP/PARAFAC 
Decomposition 

•  CANDECOMP = Canonical Decomposition (Carroll & Chang, 1970) 
•  PARAFAC = Parallel Factors (Harshman, 1970) 
•  Core is diagonal (specified by the vector λ) 
•  Columns of A, B, and C are not orthonormal 
•  If R is minimal, then R is called the rank of the tensor (Kruskal 1977)  
•  Can have rank(  ) > min{I,J,K} 

¼ 

I x R 
K x 

R 
A 

B 
J x R 

C 
R x R x R 

I x J x K 

+…+ = 
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PARAFAC-Alternating Least Squares (ALS) 

Find all the vectors in 
one mode at a time 

Successively solve for each component (A,B,C). 

Khatri-Rao Product 
(column-wise Kronecker product) 

Repeat for B,C, etc. 

If C, B, and Λ are fixed, the optimal A is given by: 

I x J x K 

+…+ = 

Hadamard Product 

details 
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PARAFAC is often unique 
I x J x K 

+…+ 

a1 

b1 

c1 

aR 

bR 

cR 

Sufficient condition for uniqueness (Kruskal, 1977): 

kA = k-rank of A = max number k such that every set 
of k columns of A is linearly independent 

= 
Assume  

PARAFAC 
decomposition 

is exact. 

details 
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Tucker vs. PARAFAC Decompositions 
•  Tucker 

–  Variable transformation in 
each mode 

–  Core G may be dense 
–  A, B, C generally 

orthonormal 
–  Not unique 

•  PARAFAC 
–  Sum of rank-1 components 
–  No core, i.e., superdiagonal 

core 
–  A, B, C may have  linearly 

dependent columns 
–  Generally unique 

I x J x K 

~ 
A 

I x R 

B 
J x S 

C K x 
T 

R x S x T 

I x J x K 

+…+ ~ 

a1   aR 

b1 

c1 

bR 

cR 

IMPORTANT 
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Tensor tools - summary 
•  Two main tools 

– PARAFAC 
– Tucker 

•  Both find row-, column-, tube-groups 
–  but in PARAFAC the three groups are identical 

•  To solve: Alternating Least Squares 

•  Toolbox: from Tamara Kolda: 
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/ 
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P1: Social network analysis 
•  Multiway latent semantic indexing (LSI) 

– Monitor the change of the community structure 
over time 

Philip Yu 

Michael 
Stonebreaker 

‘Query’ ‘Pattern’ 

tim
e 
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P1: Social network analysis (cont.) 
Authors Keywords Year 
michael carey, michael 
stonebreaker, h. jagadish, 
hector garcia-molina 

 queri,parallel,optimization,concurr, 
objectorient 

1995 

surajit chaudhuri,mitch  
cherniack,michael 
stonebreaker,ugur etintemel 

distribut,systems,view,storage,servic,process,
cache 

2004 

 jiawei han,jian pei,philip s. yu, 
jianyong wang,charu c. aggarwal 

streams,pattern,support, cluster, 
index,gener,queri  

2004 

•  Two groups are correctly identified: Databases and Data 
mining 

•  People and concepts are drifting over time 

DM 

DB 

CMU SCS 

56 

P2: Web graph mining 

•  How to order the importance of web pages? 
– Kleinberg’s algorithm HITS 
– PageRank 
– Tensor extension on HITS (TOPHITS) 
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Kleinberg’s Hubs and Authorities 
(the HITS method) 

Sparse adjacency matrix and its SVD: 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

Kleinberg, JACM, 1999 
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authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 to 

HITS Authorities on Sample Data 

We started our crawl from 
http://www-neos.mcs.anl.gov/neos,  

and crawled 4700 pages, 
resulting in 560  

 cross-linked hosts. 
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Three-Dimensional View of the Web 

Observe that this 
tensor is very sparse! 

Kolda, Bader, Kenny, ICDM05 
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Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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Topical HITS (TOPHITS) 
Main Idea: Extend the idea behind the HITS model to incorporate 
term (i.e., topical) information. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic 

fro
m

 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 
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TOPHITS Terms & Authorities 
on Sample Data 

TOPHITS uses 3D analysis to find 
the dominant groupings of web 
pages and terms. 

authority scores 
for 1st topic 

hub scores 
for 1st topic 

hub scores 
for 2nd topic 

authority scores 
for 2nd topic fro

m
 

to 

ter
m 

term scores 
for 1st topic 

term scores 
for 2nd topic 

Tensor PARAFAC 

wk = # unique links using term 
k 
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Conclusions 

•  Real data are often in high dimensions with 
multiple aspects (modes) 

•  Matrices and tensors provide elegant theory 
and algorithms 

I x J x K 

+…+ ~ 

a1   aR 

b1 

c1 

bR 

cR 
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