

15-826: Multimedia Databases and Data Mining

Lecture #21: Tensor decompositions *C. Faloutsos*

	-
4	•
***	5
o	

MU SCS

Must-read Material

 Tamara G. Kolda and Brett W. Bader.
 <u>Tensor decompositions and applications.</u>
 Technical Report SAND2007-6702, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, November 2007

2

CMU SCS

Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- Indexing similarity search
 - Data Mining

CMU SC

Indexing - Detailed outline

- primary key indexing
- secondary key / multi-key indexing
- · spatial access methods
- · fractals
- text
- Singular Value Decomposition (SVD)

- Tensors

• multimedia

• ...

4

CMU SC

Most of foils by

- Dr. Tamara Kolda (Sandia N.L.)
- csmr.ca.sandia.gov/~tgkolda

- Dr. Jimeng Sun (CMU -> IBM)
- www.cs.cmu.edu/~jimeng

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/

5

CMU SCS

Outline

- Motivation Definitions
- · Tensor tools
- Case studies

	Grup	11 500	ial net	WOIK	
	John	Peter	Mary	Nick	
John	0	11	22	55	
Peter	5	0	6	7	
Mary					
Nick					

Motivation: Why tensors?

• Q: what is a tensor?

Motivation 2: Why tensor?

• A: N-D generalization of matrix:

KDD'07	data	mining	classif.	tree	...
John	13	11	22	55	...
Peter	5	4	6	7	...
Mary	
Nick
...	
...	
...	
15					

×

CMU SCS

P2: Web graph mining

- How to order the importance of web pages?
 - Kleinberg's algorithm HITS
 - PageRank
 - Tensor extension on HITS (TOPHITS)
 - context-sensitive hypergraph analysis

20

CMU SCS

Outline

- Motivation Definitions
- Tensor tools
- Case studies
- Tensor Basics
- Tucker
- PARAFAC

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ``alternating least squares'' (ALS)
- Details follow we start with terminology:

- author x keyword x conference
- A: author x author-group
- B: keyword x keyword-group
- C: conf. x conf-group
- ullet \mathcal{G} : how groups relate to each other

PARAFAC is often unique			
$\mathbf{X} = \mathbf{A}, \mathbf{A}, \mathbf{B}, \mathbf{C} = \sum_{r}^{\lambda_1} \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$ Assume PARAFAC decomposition is exact.			
Sufficient condition for uniqueness (Kruskal, 1977): $2R+2 \leq k_{\rm A}+k_{\rm B}+k_{\rm C}$			
k _A = k-rank of A = max number k such that every set of k columns of A is linearly independent 51			

Tensor tools - summary

- Two main tools
 - PARAFAC
 - Tucker
- Both find row-, column-, tube-groups
 - but in PARAFAC the three groups are identical
- To solve: Alternating Least Squares
- Toolbox: from Tamara Kolda: http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

×	CMU SCS					
Conclusions						
	• Real data are often in high dimensions with multiple aspects (modes)					
	• Matrices and tensors provide elegant theory and algorithms					
	$\begin{array}{c c} x \ J \ x \ K \\ \hline x \\ \hline \end{array}$					
	63					

References

- Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra S. Modha: Information-theoretic co-clustering. KDD 2003: 89-98
- T. G. Kolda, B. W. Bader and J. P. Kenny. *Higher-Order Web Link Analysis Using Multilinear Algebra*. In: ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. Windowbased Tensor Analysis on High-dimensional and Multiaspect Streams, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006