
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

3h tutorial: www.cs.cmu.edu/~christos/TALKS/SDM-tut-07/

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\quad Motivating Applications
- Why matrices are important?
- Why tensors are useful?
- P1: social networks
- P2: web mining

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

35 ${ }^{\text {cmuscs }}$
 P1: Social network analysis

- Traditionally, people focus on static networks and find community structures
- We plan to monitor the change of the community structure over time

P2: Web graph mining

- How to order the importance of web pages?
- Kleinberg's algorithm HITS
- PageRank
- Tensor extension on HITS (TOPHITS)
- context-sensitive hypergraph analysis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Best rank-k approximation in L2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Main points:

- 2 major types of tensor decompositions: PARAFAC and Tucker
- both can be solved with ` ${ }^{\text {alternating least }}$ squares'" (ALS)
- Details follow - we start with terminology:

29

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Tensor times a matrix

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
- Tensor times a vector
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Observe: For two vectors \mathbf{a} and $\mathbf{b}, \mathbf{a} \pm \mathbf{b}$ and $\mathbf{a}-\mathbf{b}$ have the same elements, but one is shaped into a matrix and the other into a vector. 35 \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Tucker Tensor $\begin{aligned} \mathcal{X} & =\mathcal{G} \times \times_{1} \mathbf{U} \times_{2} \mathbf{V} \times{ }_{3} \mathbf{W} \\ & =\sum_{r} \sum_{s} \sum_{t} g_{r s t} \mathbf{u}_{r} \circ \mathbf{v}_{s} \circ \mathbf{w}_{t} \\ & \equiv \llbracket \mathcal{G} ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket \end{aligned}$	- Kruskal Tensor $\begin{aligned} x & =\sum_{r} \lambda_{r} \mathbf{u}_{r} \circ \mathbf{v}_{r} \circ \mathbf{w}_{r} \\ & \equiv \llbracket \lambda ; \mathbf{U}, \mathbf{V}, \mathbf{W} \rrbracket \end{aligned}$
In matrix form:	In matrix form:
$\mathrm{X}_{(1)}=\mathrm{UG}_{(1)}(\mathbf{W} \otimes \mathrm{V})^{\top}$	$\begin{gathered} \text { Let } \boldsymbol{\Lambda}=\operatorname{diag}(\lambda) \\ \mathbf{X}_{(1)}=\mathbf{U} \boldsymbol{\Lambda}(\mathbf{W} \odot \mathbf{V})^{\top} \end{gathered}$
$\mathrm{X}_{(2)}=\mathrm{VG}_{(2)}(\mathbf{W} \otimes \mathrm{U})^{\top}$	$\mathbf{X}_{(2)}=\mathbf{V} \boldsymbol{\Lambda}(\mathbf{W} \odot \mathbf{U})^{\top}$
$\mathrm{X}_{(3)}=\mathrm{WG}_{(3)}(\mathbf{V} \otimes \mathbf{U})^{\top}$	$\mathrm{X}_{(3)}=\mathbf{W} \boldsymbol{\Lambda}(\mathrm{V} \odot \mathbf{U})^{\top}$
$\operatorname{vec}(\boldsymbol{X})=(\mathbf{W} \otimes \mathbf{V} \otimes \mathbf{U}) \operatorname{vec}(\mathcal{G})$	$\operatorname{vec}(\boldsymbol{X})=\mathbf{W}$ ($\odot \mathbf{V} \odot \mathbf{U}) \lambda$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tucker Decomposition - intuition

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

term x
term-group

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$x \approx \llbracket \mathcal{G} ; \mathrm{A}, \mathrm{B}, \mathrm{C} \rrbracket$
Given A, B, C orthonormal, the optimal core is:

root of the sum of all the
elements squared
Eliminate the core to get:

$$
\|\mathcal{X}-\llbracket \mathcal{G} ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket\|^{2}=\|\mathcal{X}\|^{2}-2\langle\mathcal{X}, \llbracket \mathcal{G} ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket\rangle+\|\mathcal{G}\|^{2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Higher Order SVD (HO-SVD)

Not optimal, but
often used to
initialize Tucker-
ALS algorithm.

(Observe connection to Tucker1)
$A=$ leading R left singular vectors of $\mathbf{X}_{(1)}$
$B=$ leading S left singular vectors of $X_{(2)}$
$C=$ leading T left singular vectors of $\mathbf{X}_{(3)}$

$$
\mathcal{G}=\llbracket \boldsymbol{X} ; \mathbf{A}^{\top}, \mathbf{B}^{\top}, \mathbf{C}^{\top} \rrbracket
$$

De Lathauwer, De Moor, \& Vandewalle, SIMAX, 198045
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Tucker-Alternating Least Squares (ALS)

- Initialize
- Choose R, S, T

Calculate A, B, C via HO-SVD
\qquad

- Until converged do
$-\mathbf{A}=\mathrm{R}$ leading left singular vectors of $\mathbf{X}_{(1)}(\mathbf{C} \otimes \mathbf{B})$
- $\mathbf{B}=\mathrm{S}$ leading left singular vectors of $\mathbf{X}_{(2)}(\mathbf{C} \otimes \mathbf{A})$
- $\mathbf{C}=\mathrm{T}$ leading left singular vectors of $\mathbf{X}_{(3)}(\mathbf{B} \otimes \mathbf{A})$
- Solve for core:
$\mathcal{G}=\llbracket \mathcal{X} ; \mathbf{A}^{\top}, \mathbf{B}^{\top}, \mathbf{C}^{\top} \rrbracket$
Kroonenberg \& De Leeuw, Psychometrika, 1980

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
X \approx \llbracket \lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket=\sum_{r} \lambda_{r} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}
$$

- CANDECOMP = Canonical Decomposition (Carroll \& Chang, 1970)
- PARAFAC = Parallel Factors (Harshman, 1970)
- Core is diagonal (specified by the vector λ)
- Columns of \mathbf{A}, \mathbf{B}, and \mathbf{C} are not orthonormal
- If R is minimal, then R is called the rank of the tensor (Kruskal 1977)
- Can have $\operatorname{rank}(X)>\min \{\mathrm{I}, \mathrm{J}, \mathrm{K}\}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
PARAFAC-Alternating Least Squares (ALS)
Successively solve for each component (A,B,C).

$$
\begin{aligned}
& x \approx \llbracket \lambda ; \mathrm{A}, \mathrm{~B}, \mathrm{C} \rrbracket \\
& \mathrm{X}_{(1)} \approx \mathrm{A} \Lambda(\mathrm{C} \odot \mathrm{~B})^{\top}
\end{aligned}
$$

Khatri-Rao Product (column-wise Kronecker product)

$C \cdot \mathbf{B} \equiv\left[\begin{array}{llll}\mathbf{c}_{1} \otimes \mathbf{b}_{1} & \mathbf{c}_{2} \otimes \mathbf{b}_{2} & \cdots \mathbf{c}_{R} \otimes \mathbf{b}_{R}\end{array}\right]$
$(\mathbf{C} \odot \mathbf{B})^{\dagger} \equiv\left(\mathbf{C}^{\top} \mathbf{C} * \mathbf{B}^{\top} \mathbf{B}\right)^{\dagger}(\mathbf{C} \odot B)^{\top}$
Hadamad Product
If \mathbf{C}, \mathbf{B}, and $\boldsymbol{\Lambda}$ are fixed, the optimal A is given by:

$$
\begin{gathered}
\mathbf{A}=\mathbf{X}_{(1)}(\mathbf{C} \odot \mathbf{B})\left(\mathbf{C}^{\top} \mathbf{C} * \mathbf{B}^{\top} \mathbf{B}\right)^{\dagger} \boldsymbol{\Lambda}^{-1} \\
\text { Repeat for } \mathbf{B}, \mathbf{C}, \text { etc. }
\end{gathered}
$$

\qquad
\qquad

$$
x=\llbracket \lambda ; \mathbf{A}, \mathbf{B}, \mathbf{C} \rrbracket=\sum_{r} \lambda_{r} \mathbf{a}_{r} \circ \mathbf{b}_{r} \circ \mathbf{c}_{r}
$$

\qquad
\qquad
\qquad
\qquad
Sufficient condition for uniqueness (Kruskal, 1977):

$$
2 R+2 \leq k_{\mathrm{A}}+k_{\mathrm{B}}+k_{\mathrm{C}}
$$

$\mathrm{k}_{\mathrm{A}}=\mathrm{k}$-rank of $\mathbf{A}=$ max number k such that every set of k columns of \mathbf{A} is linearly independent

\qquad
\qquad
\qquad
\qquad
\qquad

```
3/ cmuscs
```


Tensor tools - summary

- Two main tools
- PARAFAC
- Tucker
- Both find row-, column-, tube-groups
- but in PARAFAC the three groups are identical
- To solve: Alternating Least Squares
- Toolbox: from Tamara Kolda:
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

\qquad
\qquad

- Two groups are correctly identified: Databases and Data mining
- People and concepts are drifting over time

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$\begin{array}{ll}3 \mathrm{~J}^{\text {cmuscs }} & \\ & \text { Topical HITS (TOPHITS) }\end{array}$
Main Idea: Extend the idea behind the HITS model to incorporate term (i.e., topical) information.

$$
\boldsymbol{X} \approx \sum_{r=1}^{R} \lambda_{r} \mathbf{h}_{r} \circ \mathbf{a}_{r}
$$

\qquad

\quad References

- Inderjit S. Dhillon, Subramanyam Mallela, Dharmendra
S. Modha: Information-theoretic co-clustering. KDD
2003: 89-98
- T. G. Kolda, B. W. Bader and J. P. Kenny. Higher-
Order Web Link Analysis Using Multilinear Algebra. In:
ICDM 2005, Pages 242-249, November 2005.
- Jimeng Sun, Spiros Papadimitriou, Philip Yu. Window-
based Tensor Analysis on High-dimensional and Multi-
aspect Streams, Proc. of the Int. Conf. on Data Mining
(ICDM), Hong Kong, China, Dec 2006
\qquad
\qquad
\qquad
\qquad
\qquad based Tensor Analysis on High-dimensional and Multiaspect Streams, Proc. of the Int. Conf. on Data Mining (ICDM), Hong Kong, China, Dec 2006

