

CMU S

15-826: Multimedia Databases and Data Mining

Lecture #20: SVD - part III (more case studies)

C. Faloutsos

CMU SCS

Must-read Material

- Textbook Appendix D
- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

15-826

Copyright: C. Faloutsos (2011)

2

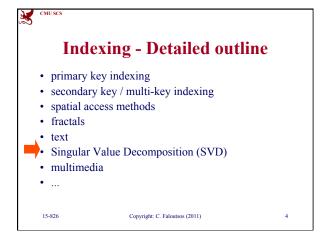
CMU SCS

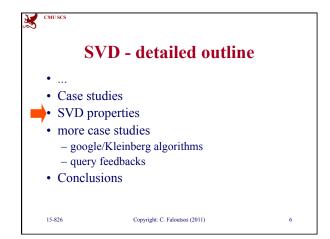
Outline

Goal: 'Find similar / interesting things'

- Intro to DB
- **.** . . .
- Indexing similarity search
- · Data Mining

15-826





C. Faloutsos 15-826

SVD - Other properties **summary**

- can produce orthogonal basis (obvious) (who cares?)
- can solve over- and under-determined linear problems (see C(1) property)
- can compute 'fixed points' (= 'steady state prob. in Markov chains') (see C(4) property)

Copyright: C. Faloutsos (2011)

IMPORTANT!

Properties – sneak preview:

$$A(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

B(5):
$$(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant) } \mathbf{v}_1$$

$$C(1): \mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{A}^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or least-squares solution

$$C(4): A^T A v_1 = \lambda_1^2 v_1$$

15-826

Copyright: C. Faloutsos (2011)

SVD -outline of properties

- (A): obvious
- (B): less obvious
- (C): least obvious (and most powerful!)

15-826

15-826

Properties - by defn.:

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

A(1):
$$\mathbf{U}^{\mathrm{T}}$$
 \mathbf{U}^{T} \mathbf{U}^{T} \mathbf{U}^{T} \mathbf{U}^{T} \mathbf{U}^{T}

A(2):
$$\mathbf{V}^{\mathrm{T}}_{[\mathrm{r} \times \mathrm{n}]} \mathbf{V}_{[\mathrm{n} \times \mathrm{r}]} = \mathbf{I}_{[\mathrm{r} \times \mathrm{r}]}$$

A(1):
$$\mathbf{U}^{T}_{[r \times n]} \mathbf{U}_{[n \times r]} = \mathbf{I}_{[r \times r]}$$
 (identity matrix)
A(2): $\mathbf{V}^{T}_{[r \times n]} \mathbf{V}_{[n \times r]} = \mathbf{I}_{[r \times r]}$
A(3): $\mathbf{\Lambda}^{k} = \operatorname{diag}(\lambda_{1}^{k}, \lambda_{2}^{k}, \dots \lambda_{r}^{k})$ (k: ANY real number)

$$A(4)$$
: $A^T = V \Lambda U^T$

Copyright: C. Faloutsos (2011)

10

11

12

Less obvious properties

$$\mathbf{A}(0):\,\mathbf{A}_{[n\,x\,m]}=\mathbf{U}_{\,[\,n\,x\,r\,]}\,\boldsymbol{\Lambda}_{\,[\,r\,x\,r\,]}\,\mathbf{V}^{\mathbf{T}}_{\,\,[\,r\,x\,m]}$$

B(1):
$$\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = ??$$

15-826

Copyright: C. Faloutsos (2011)

Less obvious properties

$$\begin{aligned} &A(0): \ \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \ \boldsymbol{\Lambda}_{[r \times r]} \ \mathbf{V}^{T}_{[r \times m]} \\ &B(1): \ \mathbf{A}_{[n \times m]} \ (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \ \boldsymbol{\Lambda}^{2} \ \mathbf{U}^{T} \\ &\text{symmetric; Intuition?} \end{aligned}$$

15-826

13

14

15

CMU SC

Less obvious properties

A(0): $\mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$ B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^{T})_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^{2} \mathbf{U}^{T}$ symmetric; Intuition?

'document-to-document' similarity matrix

B(2): symmetrically, for 'V'

 $(\mathbf{A}^{\mathrm{T}})_{[m \times n]} \mathbf{A}_{[n \times m]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{\mathrm{T}}$ Intuition?

15-826

Copyright: C. Faloutsos (2011)

CMU

Less obvious properties

A: term-to-term similarity matrix

B(3): $((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]})^k = \mathbf{V} \mathbf{\Lambda}^{2k} \mathbf{V}^T$ and

B(4): $({\bf A}^T {\bf A})^k \sim {\bf v}_1 \lambda_1^{2k} {\bf v}_1^T \text{ for } k >> 1$

 \mathbf{v}_1 : [m x 1] first column (singular-vector) of \mathbf{V}

 λ_1 : strongest singular value

15-826

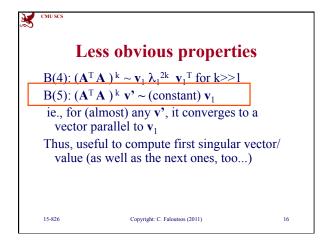
Copyright: C. Faloutsos (2011)

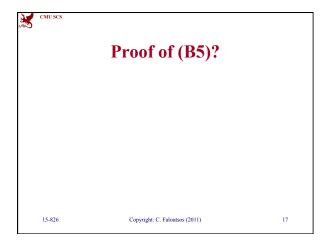
faloutsos (2011)

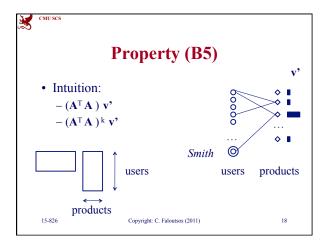
CMU SCS

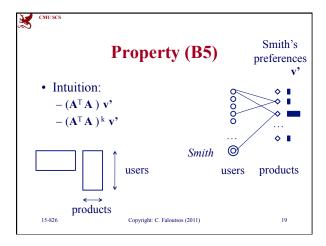
Proof of (B4)?

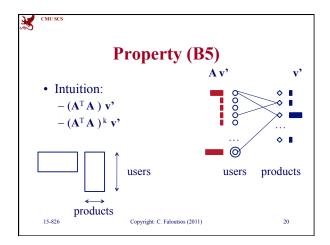
15-826

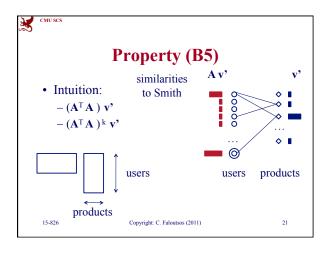


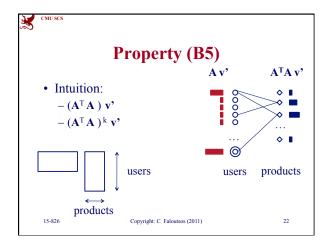


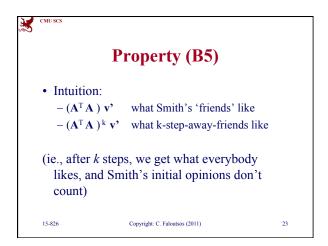




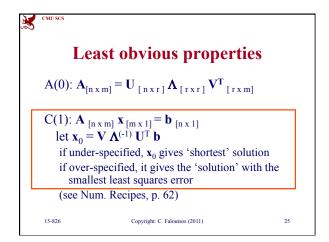


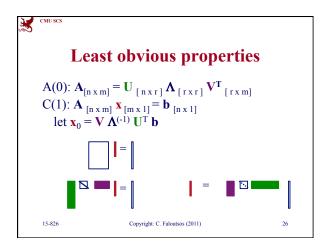


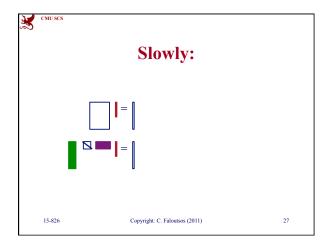


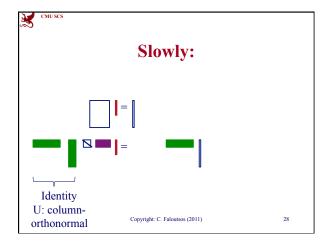


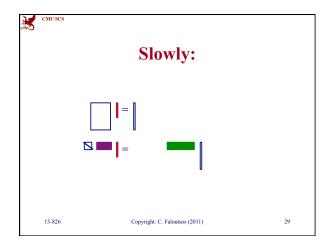
×	CMU SCS	
	Less obvious properties -	
	repeated:	
	$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{A}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$	
	B(1): $\mathbf{A}_{[n \times m]} (\mathbf{A}^T)_{[m \times n]} = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T$	
	$\mathbf{B}(2): (\mathbf{A}^{T})_{[\mathbf{m} \times \mathbf{n}]} \mathbf{A}_{[\mathbf{n} \times \mathbf{m}]} = \mathbf{V} \mathbf{\Lambda}^{2} \mathbf{V}^{T}$	
	B(3): $((\mathbf{A}^T)_{[m \times n]} \mathbf{A}_{[n \times m]})^k = \mathbf{V} \mathbf{\Lambda}^{2k} \mathbf{V}^T$	
	B(4): $(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{\mathrm{k}} \sim \mathrm{v}_{1} \lambda_{1}^{2\mathrm{k}} \mathrm{v}_{1}^{\mathrm{T}}$	
	B(5): $(\mathbf{A}^T \mathbf{A})^k \mathbf{v}' \sim \text{(constant)} \mathbf{v}_1$	
	15-826 Copyright: C. Faloutsos (2011)	24
	15-826 Copyright: C. Faloutsos (2011)	24

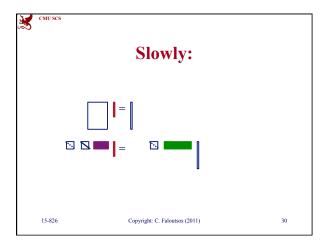


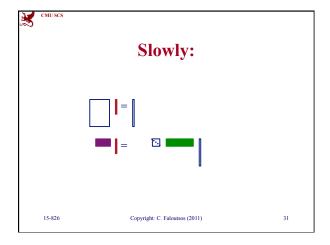


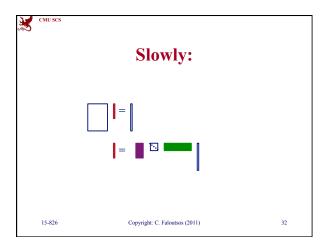




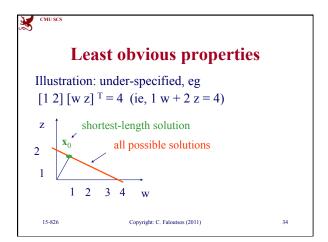












×	CMU SCS		Exercise
	Ve	erify formula:	
	$A = [1 \ 2]$ b =	= [4]	
	$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$		
	U = ??		
	∧ = ??		
	V =??		
	$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b}$		
	15-826	Copyright: C. Faloutsos (2011)	35

×	CMU SCS	Exercise	
	Verify formula:		
	$\mathbf{A} = \begin{bmatrix} 1 \ 2 \end{bmatrix} \mathbf{b} = \begin{bmatrix} 4 \end{bmatrix}$ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ $\mathbf{U} = \begin{bmatrix} 1 \end{bmatrix}$		
	$\mathbf{\Lambda} = [\text{sqrt}(5)]$ $\mathbf{V} = [1/\text{sqrt}(5) 2/\text{sqrt}(5)]^{T}$ $\mathbf{x}_{0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{T} \mathbf{b}$		
	15-826 Copyright: C. Faloutsos (2011)	36	

CMUS

Exercise

Verify formula:

 $\mathbf{A} = \begin{bmatrix} 1 \ 2 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 4 \end{bmatrix}$ $\mathbf{A} = \mathbf{U} \wedge \mathbf{V}^{\mathsf{T}}$ $\mathbf{U} = \begin{bmatrix} 1 \end{bmatrix}$ $\mathbf{\Lambda} = \begin{bmatrix} \mathsf{sqrt}(5) \end{bmatrix}$ $\mathbf{V} = \begin{bmatrix} 1/\mathsf{sqrt}(5) & 2/\mathsf{sqrt}(5) \end{bmatrix}^{\mathsf{T}}$ $\mathbf{v} = \mathbf{V} \wedge \begin{pmatrix} -1 & \mathbf{U}^{\mathsf{T}} \mathbf{b} = \begin{bmatrix} 1/5 & 2/5 \end{pmatrix}$

 $\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b} = [1/5 2/5]^{\mathrm{T}} [4]$

 $= [4/5 \ 8/5]^{T}$: w= 4/5, z = 8/5

15-826

Copyright: C. Faloutsos (2011)

CMU SCS

Exercise

37

Verify formula:

Show that w=4/5, z=8/5 is

- (a) A solution to 1*w + 2*z = 4 and
- (b) Minimal (wrt Euclidean norm)

15-826

Copyright: C. Faloutsos (2011)

38

CMU SC

Exercise

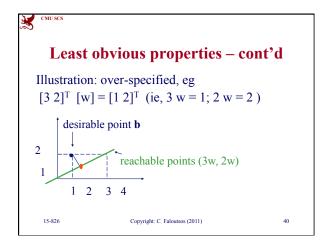
Verify formula:

Show that w=4/5, z=8/5 is

- (a) A solution to 1*w + 2*z = 4 and A: easy
- (b) Minimal (wrt Euclidean norm)

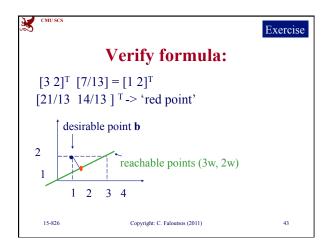
A: [4/5 8/5] is perpenticular to [2 -1]

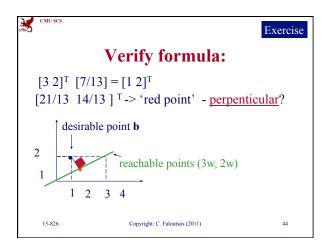
15-826

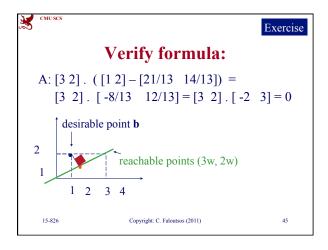


×	CMU SCS		Exercise
	\mathbf{V}	erify formula:	
	$\mathbf{A} = [3\ 2]^{\mathrm{T}}$	$\mathbf{b} = [1 \ 2]^{\mathrm{T}}$	
	$\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$		
	$\mathbf{U} = ??$ $\mathbf{\Lambda} = ??$		
	$\mathbf{V} = ??$		
	$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{I}$	$\mathbf{U}^{T} \mathbf{b}$	
	15-826	Copyright: C. Faloutsos (2011)	41

**	CMU SCS	Exercise	
	Verify formula:		
	$\mathbf{A} = \begin{bmatrix} 3 & 2 \end{bmatrix}^{\mathrm{T}} \mathbf{b} = \begin{bmatrix} 1 & 2 \end{bmatrix}^{\mathrm{T}}$ $\mathbf{A} = \mathbf{U} \mathbf{\Lambda} \mathbf{V}^{\mathrm{T}}$ $\mathbf{U} = \begin{bmatrix} 3/\operatorname{sqrt}(13) & 2/\operatorname{sqrt}(13) \end{bmatrix}^{\mathrm{T}}$ $\mathbf{\Lambda} = \begin{bmatrix} \operatorname{sqrt}(13) \end{bmatrix}$ $\mathbf{V} = \begin{bmatrix} 1 \end{bmatrix}$		
	$\mathbf{x_0} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathrm{T}} \mathbf{b} = [7/13]$ 15-826 Copyright: C. Faloutsos (2011)	42	







15-826

Least obvious properties cont'd

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{A}_{[r \times r]} \mathbf{V}^{\mathbf{T}}_{[r \times m]}$$

C(2): $\mathbf{A}_{[n \times m]} \mathbf{v}_{1[m \times 1]} = \lambda_1 \mathbf{u}_{1[n \times 1]}$ where v_1 , u_1 the first (column) vectors of V, U. (v_1 == right-singular-vector)

C(3): symmetrically: $\mathbf{u_1}^T \mathbf{A} = \lambda_1 \mathbf{v_1}^T$ $\mathbf{u}_1 == \text{left-singular-vector}$

Therefore:

Copyright: C. Faloutsos (2011)

Least obvious properties cont'd

$$A(0) \colon \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \, \mathbf{\Lambda}_{[r \times r]} \, \mathbf{V}^T_{[r \times m]}$$

$$C(4): A^T A v_1 = \lambda_1^2 v_1$$

(fixed point - the dfn of eigenvector for a symmetric matrix)

15-826

Copyright: C. Faloutsos (2011)

47

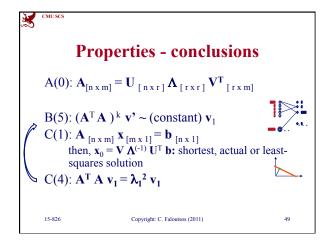
Least obvious properties altogether

$$\mathbf{A}(0): \mathbf{A}_{[n \times m]} = \mathbf{U}_{[n \times r]} \mathbf{\Lambda}_{[r \times r]} \mathbf{V}^{T}_{[r \times m]}$$

C(1): $\mathbf{A}_{[n \times m]} \mathbf{x}_{[m \times 1]} = \mathbf{b}_{[n \times 1]}$ then, $\mathbf{x}_0 = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^T \mathbf{b}$: shortest, actual or least-squares solution

 $C(2): \mathbf{A}_{[n \times m]} \mathbf{v}_{1 [m \times 1]} = \boldsymbol{\lambda}_{1} \mathbf{u}_{1 [n \times 1]}$ $C(3): \mathbf{u}_{1}^{T} \mathbf{A} = \boldsymbol{\lambda}_{1} \mathbf{v}_{1}^{T}$

 $C(4): A^T A v_1 = \lambda_1^2 v_1$



SVD - detailed outline

• ...

• Case studies

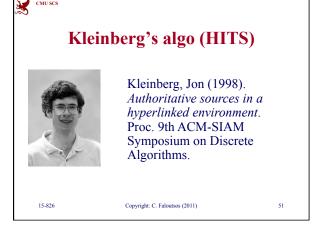
• SVD properties

• more case studies

- Kleinberg/google algorithms

- query feedbacks

• Conclusions



Kleinberg's algorithm

- Problem dfn: given the web and a query
- find the most 'authoritative' web pages for this query

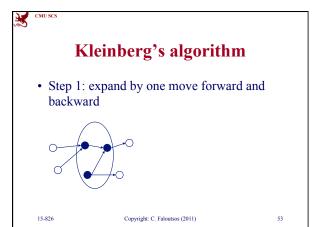
Step 0: find all pages containing the query terms

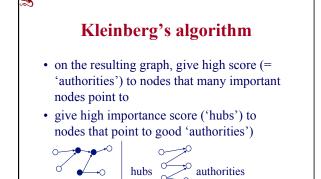
Step 1: expand by one move forward and backward

15-826

Copyright: C. Faloutsos (2011)

52





Copyright: C. Faloutsos (2011)

15-826

C. Faloutsos 15-826

Kleinberg's algorithm

observations

- · recursive definition!
- each node (say, 'i'-th node) has both an authoritativeness score a_i and a hubness score h_i

15-826

Copyright: C. Faloutsos (2011)

55

Kleinberg's algorithm

Let E be the set of edges and A be the adjacency matrix:

the (i,j) is 1 if the edge from i to j exists

Let h and a be $[n \times 1]$ vectors with the 'hubness' and 'authoritativiness' scores.

Then:

15-826

Copyright: C. Faloutsos (2011)

57

Kleinberg's algorithm

Then:

$$a_i = h_k + h_l + h_m$$

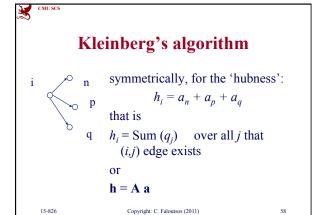
that is $a_i = \text{Sum}(h_j)$ over all j that (j,i) edge exists

or

$$\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$$

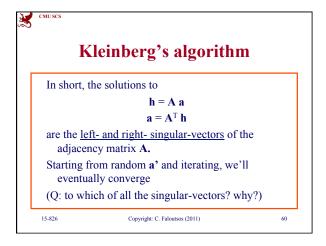
15-826

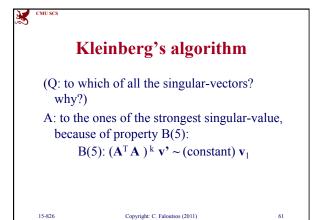
15-826



Kleinberg's algorithm

In conclusion, we want vectors \mathbf{h} and \mathbf{a} such that: $\mathbf{h} = \mathbf{A} \mathbf{a}$ $\mathbf{a} = \mathbf{A}^{\mathrm{T}} \mathbf{h}$ Recall properties: $\mathbf{C}(2): \mathbf{A}_{[n \times m]} \mathbf{v}_{1[m \times 1]} = \lambda_{1} \mathbf{u}_{1[n \times 1]}$ $\mathbf{C}(3): \mathbf{u}_{1}^{\mathrm{T}} \mathbf{A} = \lambda_{1} \mathbf{v}_{1}^{\mathrm{T}}$





CMU SCS

Kleinberg's algorithm - results

Eg., for the query 'java':
0.328 www.gamelan.com
0.251 java.sun.com
0.190 www.digitalfocus.com ("the java developer")

15-826

Copyright: C. Faloutsos (2011)

62

63

CMUSCS

Kleinberg's algorithm - discussion

- 'authority' score can be used to find 'similar pages' (how?)
- closely related to 'citation analysis', social networs / 'small world' phenomena

15-826

SVD - detailed outline

- ...
- Case studies
- SVD properties
- · more case studies

- $\ Kleinberg/\underline{google} \ algorithms$
- query feedbacks
- Conclusions

15-826

Copyright: C. Faloutsos (2011)

PageRank (google)

•Brin, Sergey and Lawrence Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

Larry Page Sergey Brin

15-826

Copyright: C. Faloutsos (2011)

faloutsos (2011)

65

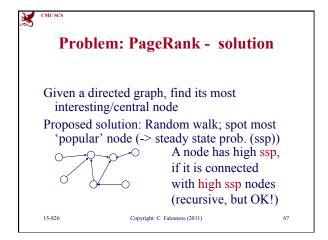
Problem: PageRank

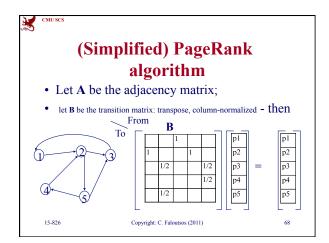
Given a directed graph, find its most interesting/central node

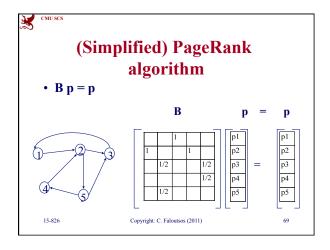
A node is important, if it is connected with important nodes (recursive, but OK!)

15-826

15-826







(Simplified) PageRank algorithm

- B p = 1 * p
- thus, **p** is the **eigenvector** that corresponds to the highest eigenvalue (=1, since the matrix is column-normalized)
- Why does such a **p** exist?
 - p exists if B is nxn, nonnegative, irreducible [Perron–Frobenius theorem]

15-826

Copyright: C. Faloutsos (2011)

70

CMU SCS

(Simplified) PageRank algorithm

- B p = 1 * p
- thus, **p** is the **eigenvector** that corresponds to the highest eigenvalue (=1, since the matrix is column-normalized)
- Why does such a **p** exist?
 - **p** exists if **B** is nxn, nonnegative, irreducible [Perron–Frobenius theorem]

15-826

Copyright: C. Faloutsos (2011)

(Simplified) PageRank algorithm

- In short: imagine a particle randomly moving along the edges
- compute its steady-state probabilities (ssp)

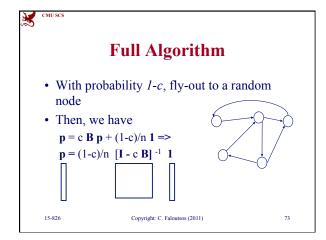
Full version of algo: with occasional random jumps

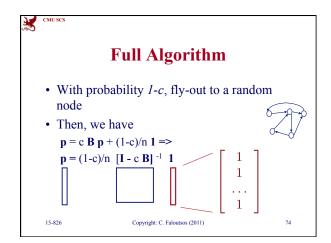
Why? To make the matrix irreducible

15-826

Copyright: C. Faloutsos (2011)

72





×	CMU SCS		
	Alternative notation – eigenvector		
	viewpoint		
	M	Modified transition matrix	
	Then	$\mathbf{M} = \mathbf{c} \ \mathbf{B} + (1-\mathbf{c})/\mathbf{n} \ 1 \ 1^{\mathrm{T}}$	
	 p = M p That is: the steady state probabilities = PageRank scores form the <i>first eigenvector</i> of the 'modified transition matrix' 		
	15-826	Copyright: C. Faloutsos (2011) 75	

Parenthesis: intuition behind eigenvectors

- Definition
- 3 properties
- intuition

16 026

Copyright: C. Faloutsos (2011)

Formal definition

If A is a $(n \times n)$ square matrix (λ, x) is an **eigenvalue/eigenvector** pair of A if

$$\mathbf{A} \mathbf{x} = \lambda \mathbf{x}$$

CLOSELY related to singular values:

15-826

Copyright: C. Faloutsos (2011)

77

Property #1: Eigen- vs singularvalues

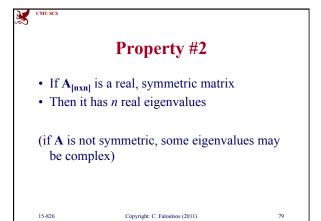
if

$$\mathbf{B}_{[\mathbf{n} \times \mathbf{m}]} = \mathbf{U}_{[\mathbf{n} \times \mathbf{r}]} \mathbf{\Lambda}_{[\mathbf{r} \times \mathbf{r}]} (\mathbf{V}_{[\mathbf{m} \times \mathbf{r}]})^{\mathrm{T}}$$
then $\mathbf{A} = (\mathbf{B}^{\mathrm{T}} \mathbf{B})$ is symmetric and

C(4):
$$\mathbf{B}^{\mathrm{T}} \mathbf{B} \mathbf{v}_{i} = \lambda_{i}^{2} \mathbf{v}_{i}$$

ie, $\mathbf{v_1}$, $\mathbf{v_2}$, ...: eigenvectors of $\mathbf{A} = (\mathbf{B}^T \mathbf{B})$

15-826



Property #3

- If $A_{\left[nxn\right] }$ is a real, symmetric matrix
- Then it has n real eigenvalues
- And they agree with its *n* singular values, except possibly for the sign

15-826

Copyright: C. Faloutsos (2011)

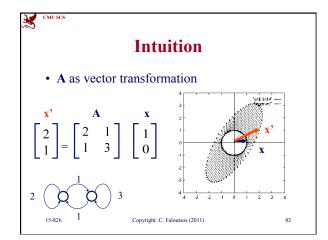
Parenthesis: intuition behind eigenvectors

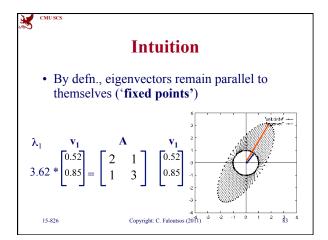
- Definition
- 3 properties
- intuition

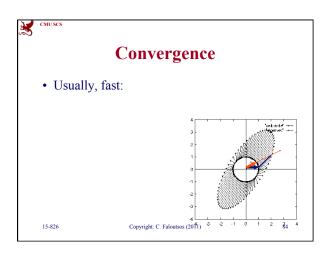
15-826

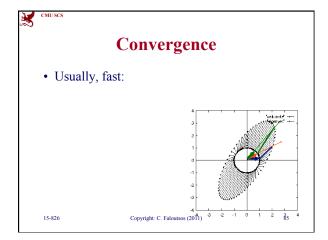
Copyright: C. Faloutsos (2011)

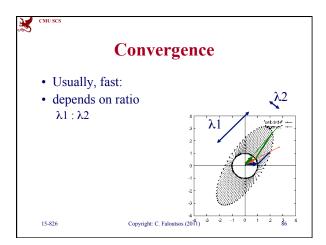
81

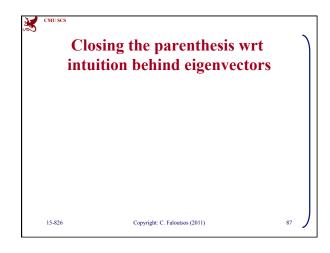












Kleinberg/PageRank - conclusions

SVD helps in graph analysis:

hub/authority scores: strongest left- and rightsingular-vectors of the adjacency matrix random walk on a graph: steady state probabilities are given by the strongest

eigenvector of the transition matrix

15-826

Copyright: C. Faloutsos (2011)

SVD - detailed outline

- ..
- · Case studies
- SVD properties
- · more case studies
 - google/Kleinberg algorithms

query feedbacks

Conclusions

15-826

Copyright: C. Faloutsos (2011)

Query feedbacks

[Chen & Roussopoulos, sigmod 94] Sample problem:

estimate selectivities (e.g., 'how many movies were made between 1940 and 1945?'

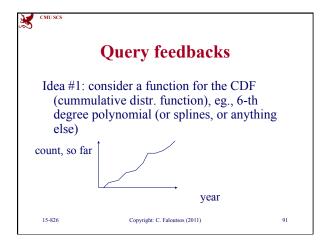
for query optimization,

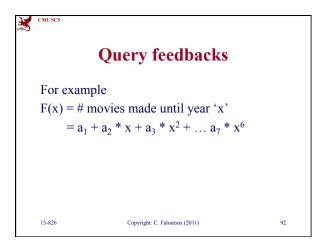
LEARNING from the query results so far!!

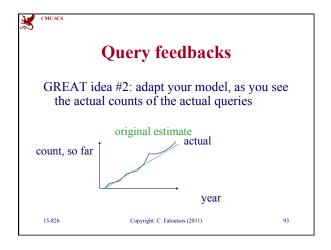
15-826

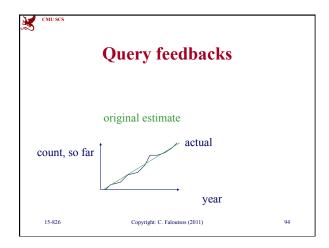
Copyright: C. Faloutsos (2011)

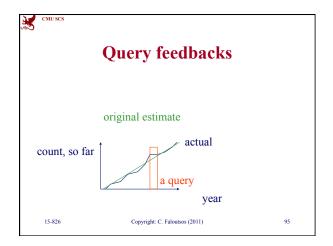
90

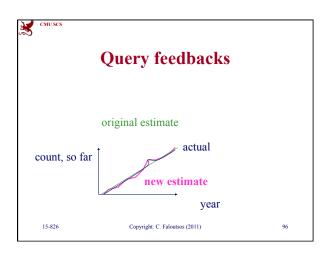


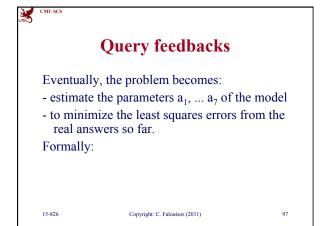


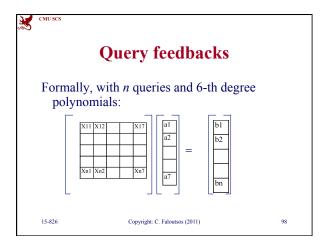


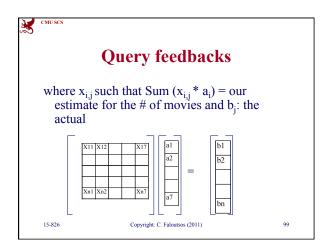


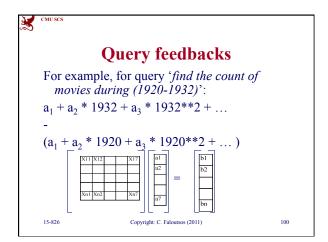


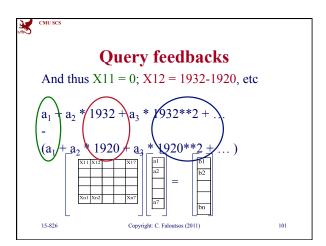


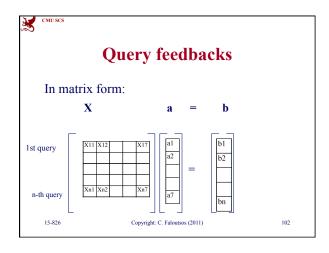


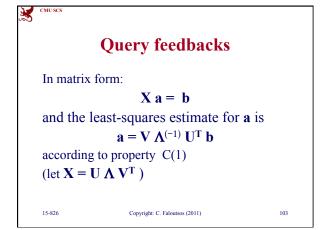








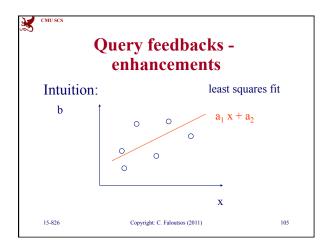


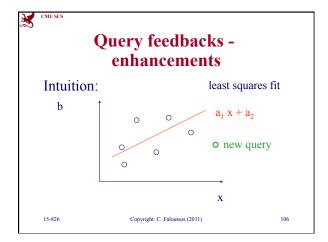


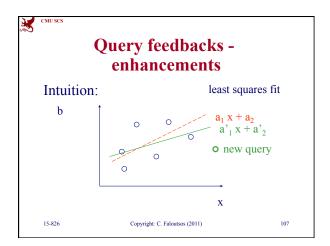
Query feedbacks enhancements

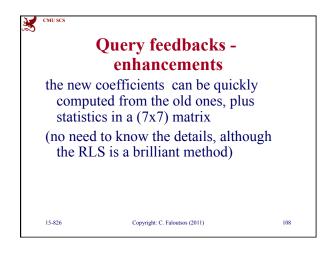
The solution $\mathbf{a} = \mathbf{V} \mathbf{\Lambda}^{(-1)} \mathbf{U}^{\mathsf{T}} \mathbf{b}$ works, but needs expensive SVD each time a new query arrives
GREAT Idea #3: Use 'Recursive Least Squares', to adapt **a** incrementally.
Details: in paper - intuition:

15-826 Copyright: C. Faloutsos (2011) 104

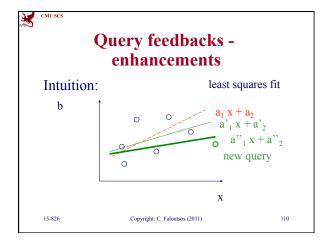


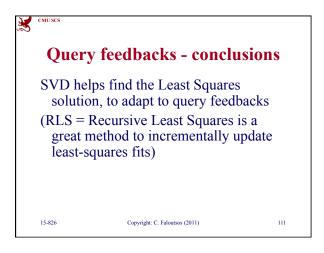


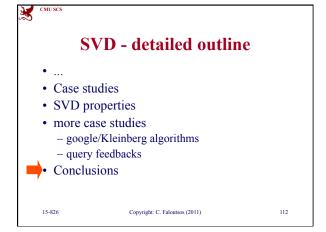












CMU SCS

Conclusions

- SVD: a valuable tool
- given a document-term matrix, it finds 'concepts' (LSI)
- ... and can reduce dimensionality (KL)
- ... and can find rules (PCA; RatioRules)

15-826

Copyright: C. Faloutsos (2011)

113

114

Conclusions cont'd

- ... and can find fixed-points or steady-state probabilities (google/ Kleinberg/ Markov Chains)
- ... and can solve optimally over- and underconstraint linear systems (least squares / query feedbacks)

15-826

CMU S

References

 Brin, S. and L. Page (1998). Anatomy of a Large-Scale Hypertextual Web Search Engine. 7th Intl World Wide Web Conf.

 Chen, C. M. and N. Roussopoulos (May 1994). Adaptive Selectivity Estimation Using Query Feedback. Proc. of the ACM-SIGMOD, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2011)

115

CMU SCS

References cont'd

- Kleinberg, J. (1998). Authoritative sources in a hyperlinked environment. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms.
- Press, W. H., S. A. Teukolsky, et al. (1992).
 Numerical Recipes in C, Cambridge University Press.

15-826

Copyright: C. Faloutsos (2011)

116