

CMU SC

15-826: Multimedia Databases and Data Mining

Lecture #9: Fractals - introduction *C. Faloutsos*

CMU SCS

Must-read Material

 Christos Faloutsos and Ibrahim Kamel, <u>Beyond Uniformity and Independence:</u> <u>Analysis of R-trees Using the Concept of</u> <u>Fractal Dimension</u>, Proc. ACM SIGACT-SIGMOD-SIGART PODS, May 1994, pp. 4-13, Minneapolis, MN.

15-826

Copyright: C. Faloutsos (2011)

2

CMU SC

Recommended Material

optional, but very useful:

- Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise
 W.H. Freeman and Company, 1991 (on reserve in the library)
 - Chapter 10: boxcounting method
 - Chapter 1: Sierpinski triangle

15-826

Copyright: C. Faloutsos (2011)

13

15

Common answer:

- Fractals / self-similarities / power laws
- Seminal works from Hilbert, Minkowski, Cantor, Mandelbrot, (Hausdorff, Lyapunov, Ken Wilson, ...)

15-826

Copyright: C. Faloutsos (2011)

Road map

- Motivation 3 problems / case studies
- Definition of fractals and power laws
- Solutions to posed problems
- More examples and tools
- Discussion putting fractals to work!
- Conclusions practitioner's guide
- Appendix: gory details boxcounting plots

15-826

Copyright: C. Faloutsos (2011)

Copyright: C. Faloutsos (2011)

4	•		

Copyright: C. Faloutsos (2011)

A counter-intuitive example

ount

o

×	CMU SCS	
	Fractals & power laws:	
	 appear in numerous settings: medical geographical / geological social computer-system related 	
	15-826 Copyright: C. Faloutsos (2011)	93

Fractals & power laws:

appear in numerous settings:

• medical

• geographical / geological

• social

• computer-system related

Power laws, cont'd

- In- and out-degree distribution of web sites [Barabasi], [IBM-CLEVER]
- length of file transfers [Crovella+Bestavros
- duration of UNIX jobs [Harchol-Balter]

15-826

Copyright: C. Faloutsos (2011)

103

Even more power laws:

- Distribution of UNIX file sizes
- web hit counts [Huberman]

15-826

Copyright: C. Faloutsos (2011)

104

Road map

- Motivation 3 problems / case studies
- Definition of fractals and power laws
- Solutions to posed problems
- More examples and tools
- Discussion putting fractals to work!
 - Conclusions practitioner's guide
 - Appendix: gory details boxcounting plots

Copyright: C. Faloutsos (2011)

Some uses of fractals:

- Detect non-existence of rules (if points are uniform)
- Detect non-homogeneous regions (eg., legal login time-stamps may have different fd than intruders')
- Estimate number of neighbors / customers / competitors within a radius

15-826

Copyright: C. Faloutsos (2011)

Road map

• Motivation – 3 problems / case studies
• Definition of fractals and power laws
• Solutions to posed problems
• More examples and tools
• Discussion - putting fractals to work!

• Conclusions – practitioner's guide
• Appendix: gory details - boxcounting plots

15-826 Copyright: C. Faloutsos (2011) 116

CMU S

Resources:

- · Software for fractal dimension
 - www.cs.cmu.edu/~christos/software.html
 - And specifically 'fdnq_h':
 - www.cs.cmu.edu/~christos/SRC/fdnq_h.zip
- Also, in 'R': 'fdim' package

15-826

Copyright: C. Faloutsos (2011)

124

CMU SCS

Books

- Strongly recommended intro book:
 - Manfred Schroeder Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise W.H. Freeman and Company, 1991
- Classic book on fractals:
 - B. Mandelbrot *Fractal Geometry of Nature*, W.H. Freeman, 1977

15-826

Copyright: C. Faloutsos (2011)

125

CMU SC

References

- [vldb95] Alberto Belussi and Christos Faloutsos, Estimating the Selectivity of Spatial Queries Using the 'Correlation' Fractal Dimension Proc. of VLDB, p. 299-310, 1995
- [Broder+'00] Andrei Broder, Ravi Kumar, Farzin Maghoul1, Prabhakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew Tomkins, Janet Wiener, Graph structure in the web, WWW'00
- M. Crovella and A. Bestavros, Self similarity in World wide web traffic: Evidence and possible causes, SIGMETRICS '96.

15-826

Copyright: C. Faloutsos (2011)

CMU S

References

 [ieeeTN94] W. E. Leland, M.S. Taqqu, W. Willinger,
 D.V. Wilson, On the Self-Similar Nature of Ethernet Traffic, IEEE Transactions on Networking, 2, 1, pp
 1-15, Feb. 1994.

[pods94] Christos Faloutsos and Ibrahim Kamel,
 Beyond Uniformity and Independence: Analysis of R-trees Using the Concept of Fractal Dimension, PODS,
 Minneapolis, MN, May 24-26, 1994, pp. 4-13

15-826

Copyright: C. Faloutsos (2011)

127

CMU SCS

References

 [vldb96] Christos Faloutsos, Yossi Matias and Avi Silberschatz, Modeling Skewed Distributions Using Multifractals and the '80-20 Law' Conf. on Very Large Data Bases (VLDB), Bombay, India, Sept. 1996.

15-826

Copyright: C. Faloutsos (2011)

128

CMU SC

References

- [vldb96] Christos Faloutsos and Volker Gaede Analysis of the Z-Ordering Method Using the Hausdorff Fractal Dimension VLD, Bombay, India, Sept. 1996
- [sigcomm99] Michalis Faloutsos, Petros Faloutsos and Christos Faloutsos, What does the Internet look like? Empirical Laws of the Internet Topology, SIGCOMM 1999

15-826

Copyright: C. Faloutsos (2011)

CMU SC

References

 [icde99] Guido Proietti and Christos Faloutsos, I/O complexity for range queries on region data stored using an R-tree International Conference on Data Engineering (ICDE), Sydney, Australia, March 23-26, 1999

 - [sigmod2000] Christos Faloutsos, Bernhard Seeger,
 Agma J. M. Traina and Caetano Traina Jr., Spatial Join Selectivity Using Power Laws, SIGMOD 2000

15-826

Copyright: C. Faloutsos (2011)

130

CMU SCS

References

- [Wang+'02] Mengzhi Wang, Anastassia Ailamaki and Christos Faloutsos,

<u>Capturing the spatio-temporal behavior of real traffic</u> <u>data</u> Performance 2002 (IFIP Int. Symp. on Computer Performance Modeling, Measurement and Evaluation), Rome, Italy, Sept. 2002

15-826

Copyright: C. Faloutsos (2011)

131

CMU SC

Appendix - Gory details

- Bad news: There are more than one fractal dimensions
 - Minkowski fd; Hausdorff fd; Correlation fd;
 Information fd
- Great news:
 - they can all be computed fast!
 - they usually have nearby values

15-826

Copyright: C. Faloutsos (2011)

Definitions

• pi: the percentage (or count) of points in the i-th cell

• r: the side of the grid

X (

CMU SCS

Definitions (cont'd)

• Many more fractal dimensions Dq (related to Renyi entropies):

$$D_{q} = \frac{1}{q - 1} \frac{\partial \log(\sum p_{i}^{q})}{\partial \log(r)} \qquad q \neq 1$$

$$D_{1} = \frac{\partial \sum p_{i} \log(p_{i})}{\partial \log(r)}$$

15-826

Copyright: C. Faloutsos (2011)

137

Hausdorff or box-counting fd:

- Box counting plot: Log(N (r)) vs Log (r)
- r: grid side
- N (r): count of non-empty cells
- (Hausdorff) fractal dimension D0:

$$D_0 = -\frac{\partial \log(N(r))}{\partial \log(r)}$$

15-826

Copyright: C. Faloutsos (2011)

CMU SCS

Observations

- q=0: Hausdorff fractal dimension
- q=2: Correlation fractal dimension (identical to the exponent of the number of neighbors vs radius)
- q=1: Information fractal dimension

15-826

Copyright: C. Faloutsos (2011)

140

141

Observations, cont'd

- in general, the Dq's take similar, but not identical, values.
- except for perfectly self-similar point-sets, where Dq=Dq' for any q, q'

15-826

Copyright: C. Faloutsos (2011)

