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Problem 

Given a large collection of (multimedia) 
records, find similar/interesting things, ie: 

•  Allow fast, approximate queries, and 
•  Find rules/patterns 
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Outline 

Goal: ‘Find similar / interesting things’ 
•  Intro to DB 
•  Indexing - similarity search 
•  Data Mining 
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Indexing - Detailed outline 

•  primary key indexing 
– B-trees and variants 
–  (static) hashing 
–  extendible hashing 

•  secondary key indexing 
•  spatial access methods 
•  text 
•  ... 
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In even more detail: 

•  B – trees 

•  B+ - trees, B*-trees 

•  hashing 
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Primary key indexing 

•  find employee with ssn=123 
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B-trees 

•  the most successful family of index 
schemes (B-trees, B+-trees, B*-trees) 

•  Can be used for primary/secondary, 
clustering/non-clustering index. 

•  balanced “n-way” search trees 
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Citation 
•  Rudolf Bayer and Edward M. 

McCreight, Organization and 
Maintenance of Large Ordered 
Indices, Acta Informatica, 
1:173-189, 1972. 

•  Received the 2001 SIGMOD innovations award 
•  among the most cited db publications 

• www.informatik.uni-trier.de/~ley/db/about/top.html 
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B-trees 

Eg., B-tree of order 3: 
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B - tree properties: 

•  each node, in a B-tree of order n: 
–  Key order 
–  at most n pointers 
–  at least n/2 pointers (except root) 
–  all leaves at the same level 
–  if number of pointers is k, then node has exactly k-1 

keys 
–  (leaves are empty) 

v1 v2 … vn-1 
p1 pn 
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Properties 

•  “block aware” nodes: each node -> disk 
page 

•  O(log (N)) for everything! (ins/del/search) 

•  typically, if n = 50 - 100, then 2 - 3 levels 

•  utilization >= 50%, guaranteed; on average 
69% 
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Queries 

•  Algo for exact match query? (eg., ssn=8?) 
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Queries 

•  Algo for exact match query? (eg., ssn=8?) 
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Queries 

•  Algo for exact match query? (eg., ssn=8?) 
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H steps (= disk 
accesses) 
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Queries 

•  what about range queries? (eg., 5<salary<8) 
•  Proximity/ nearest neighbor searches? (eg., 

salary ~ 8 ) 
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Queries 
•  what about range queries? (eg., 5<salary<8) 
•  Proximity/ nearest neighbor searches? (eg., 

salary ~ 8 ) 
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B-trees: Insertion 

•  Insert in leaf; on overflow, push middle up 
(recursively) 

•  split: preserves B - tree properties 
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B-trees 

Easy case: Tree T0; insert ‘8’ 
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B-trees 

Tree T0; insert ‘8’ 
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B-trees 

Hardest case: Tree T0; insert ‘2’ 
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B-trees 

Hardest case: Tree T0; insert ‘2’ 

1 2 
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B-trees 

Hardest case: Tree T0; insert ‘2’ 

6 

7 

9 

13 1 3 

2 2 Ovf; push middle 
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B-trees 

Hardest case: Tree T0; insert ‘2’ 

7 

9 

13 1 3 

2 

6 
Final state 
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B-trees: Insertion 

•  Q: What if there are two middles? (eg, order 
4) 

•  A: either one is fine 
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B-trees: Insertion 

•  Insert in leaf; on overflow, push middle up 
(recursively – ‘propagate split’) 

•  split: preserves all B - tree properties (!!) 
•  notice how it grows: height increases when 

root overflows & splits 
•  Automatic, incremental re-organization 
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Overview 

•  B – trees 
– Dfn, Search, insertion, deletion 

•   B+ - trees 

•  hashing 
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Deletion 

Rough outline of algo: 
•  Delete key; 
•  on underflow, may need to merge 

In practice, some implementors just allow underflows to 
happen… 
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B-trees – Deletion 

Easiest case: Tree T0; delete ‘3’ 
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B-trees – Deletion 

Easiest case: Tree T0; delete ‘3’ 
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B-trees – Deletion 

•  Case1: delete a key at a leaf – no underflow 
•  Case2: delete non-leaf key – no underflow 
•  Case3: delete leaf-key; underflow, and ‘rich 

sibling’ 
•  Case4: delete leaf-key; underflow, and ‘poor 

sibling’ 

CMU SCS 

15-826 Copyright: C. Faloutsos (2011) 36 

B-trees – Deletion 

•  Case2: delete a key at a non-leaf – no 
underflow (eg., delete 6 from T0) 
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Delete & 
promote, ie: 
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B-trees – Deletion 

•  Case2: delete a key at a non-leaf – no 
underflow (eg., delete 6 from T0) 
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B-trees – Deletion 

•  Case2: delete a key at a non-leaf – no 
underflow (eg., delete 6 from T0) 
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Delete & 
promote, ie: 3 
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B-trees – Deletion 

•  Case2: delete a key at a non-leaf – no 
underflow (eg., delete 6 from T0) 

1 7 
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13 

<3 

>3 <9 >9 
3 

FINAL TREE 
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B-trees – Deletion 

•  Case2: delete a key at a non-leaf – no 
underflow (eg., delete 6 from T0) 

•  Q: How to promote?  
•  A: pick the largest key from the left sub-tree 

(or the smallest from the right sub-tree) 
•  Observation: every deletion eventually 

becomes a deletion of a leaf key 
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B-trees – Deletion 
•  Case1: delete a key at a leaf – no underflow 
•  Case2: delete non-leaf key – no underflow 
•  Case3: delete leaf-key; underflow, and ‘rich 

sibling’ 
•  Case4: delete leaf-key; underflow, and ‘poor 

sibling’ 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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Delete & 
borrow, ie: 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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Delete & 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ 

•  ‘rich’ = can give a key, without 
underflowing 

•  ‘borrowing’ a key: THROUGH the 
PARENT! 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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Delete & 
borrow, ie: 

Rich sibling 

NO!! 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 
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B-trees – Deletion 

•  Case3: underflow & ‘rich sibling’ (eg., 
delete 7 from T0) 

1 

3 9 

13 

<3 

>3 <9 >9 

Delete & 
borrow, 
through the 
parent 

6

FINAL TREE 
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B-trees – Deletion 
•  Case1: delete a key at a leaf – no underflow 
•  Case2: delete non-leaf key – no underflow 
•  Case3: delete leaf-key; underflow, and ‘rich 

sibling’ 
•  Case4: delete leaf-key; underflow, and ‘poor 

sibling’ 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 

1 3 
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A: merge w/ 
‘poor’ sibling 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 

•  Merge, by pulling a key from the parent  
•  exact reversal from insertion: ‘split and push 

up’, vs. ‘merge and pull down’ 
•  Ie.: 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 

1 3 

6 
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>6 

A: merge w/ 
‘poor’ sibling 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ (eg., 
delete 13 from T0) 
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FINAL TREE 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ 
•  -> ‘pull key from parent, and merge’ 
•  Q: What if the parent underflows? 
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B-trees – Deletion 

•  Case4: underflow & ‘poor sibling’ 
•  -> ‘pull key from parent, and merge’ 
•  Q: What if the parent underflows? 
•  A: repeat recursively 
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Overview 

•  B – trees 

•  B+ - trees, B*-trees 

•  hashing 
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B+ trees - Motivation 
if we want to store the whole record with the 

key –> problems (what?) 
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Solution: B+ - trees  

•  They string all leaf nodes together  

•  AND 

•  replicate keys from non-leaf nodes, to make 
sure every key appears at the leaf level 
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B+ trees 
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B+ trees - insertion 
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Eg., insert ‘8’ 
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Overview 

•  B – trees 

•  B+ - trees, B*-trees 

•  hashing 
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B*-trees 

•  splits drop util. to 50%, and maybe increase 
height 

•  How to avoid them? 
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B*-trees: deferred split! 
•  Instead of splitting, LEND keys to sibling! 
(through PARENT, of course!) 
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B*-trees: deferred split! 
•  Instead of splitting, LEND keys to sibling! 
(through PARENT, of course!) 

1 2 
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FINAL TREE 
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B*-trees: deferred split! 
•  Notice: shorter, more packed, faster tree 
•  It’s a rare case, where space utilization and 

speed improve together 
•  BUT: What if the sibling has no room for 

our ‘lending’? 
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B*-trees: deferred split! 
•  BUT: What if the sibling has no room for 

our ‘lending’? 
•  A: 2-to-3 split: get the keys from the 

sibling, pool them with ours (and a key 
from the parent), and split in 3. 

•  Details: too messy (and even worse for 
deletion) 



C. Faloutsos 15-826 

24 

CMU SCS 

15-826 Copyright: C. Faloutsos (2011) 70 

Conclusions 
•  Main ideas: recursive; block-aware; on 

overflow -> split; defer splits 

•  All B-tree variants have excellent, O(logN) 
worst-case performance for ins/del/search 

•  B+ tree is the prevailing indexing method 

•  More details: [Knuth vol 3.] or [Ramakrishnan & 
Gehrke, 3rd ed, ch. 10] 


