
C. Faloutsos 15-826

1

CMU SCS

15-826: Multimedia Databases
and Data Mining

Lecture#2: Primary key indexing – B-trees
Christos Faloutsos - CMU

www.cs.cmu.edu/~christos

CMU SCS

Reading Material

[Ramakrishnan & Gehrke, 3rd ed, ch. 10]

15-826 Copyright: C. Faloutsos (2011) 2

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 3

Problem

Given a large collection of (multimedia)
records, find similar/interesting things, ie:

•  Allow fast, approximate queries, and
•  Find rules/patterns

C. Faloutsos 15-826

2

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 4

Outline

Goal: ‘Find similar / interesting things’
•  Intro to DB
•  Indexing - similarity search
•  Data Mining

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 5

Indexing - Detailed outline

•  primary key indexing
– B-trees and variants
–  (static) hashing
–  extendible hashing

•  secondary key indexing
•  spatial access methods
•  text
•  ...

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 6

In even more detail:

•  B – trees

•  B+ - trees, B*-trees

•  hashing

C. Faloutsos 15-826

3

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 7

Primary key indexing

•  find employee with ssn=123

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 8

B-trees

•  the most successful family of index
schemes (B-trees, B+-trees, B*-trees)

•  Can be used for primary/secondary,
clustering/non-clustering index.

•  balanced “n-way” search trees

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 9

Citation
•  Rudolf Bayer and Edward M.

McCreight, Organization and
Maintenance of Large Ordered
Indices, Acta Informatica,
1:173-189, 1972.

•  Received the 2001 SIGMOD innovations award
•  among the most cited db publications

• www.informatik.uni-trier.de/~ley/db/about/top.html

C. Faloutsos 15-826

4

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 10

B-trees

Eg., B-tree of order 3:

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 11

B - tree properties:

•  each node, in a B-tree of order n:
–  Key order
–  at most n pointers
–  at least n/2 pointers (except root)
–  all leaves at the same level
–  if number of pointers is k, then node has exactly k-1

keys
–  (leaves are empty)

v1 v2 … vn-1
p1 pn

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 12

Properties

•  “block aware” nodes: each node -> disk
page

•  O(log (N)) for everything! (ins/del/search)

•  typically, if n = 50 - 100, then 2 - 3 levels

•  utilization >= 50%, guaranteed; on average
69%

C. Faloutsos 15-826

5

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 13

Queries

•  Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 14

Queries

•  Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 15

Queries

•  Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

C. Faloutsos 15-826

6

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 16

Queries

•  Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 17

Queries

•  Algo for exact match query? (eg., ssn=8?)

1 3

6

7

9

13

<6

>6 <9 >9
H steps (= disk
accesses)

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 18

Queries

•  what about range queries? (eg., 5<salary<8)
•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

C. Faloutsos 15-826

7

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 19

Queries
•  what about range queries? (eg., 5<salary<8)
•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 20

Queries
•  what about range queries? (eg., 5<salary<8)
•  Proximity/ nearest neighbor searches? (eg.,

salary ~ 8)

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 21

B-trees: Insertion

•  Insert in leaf; on overflow, push middle up
(recursively)

•  split: preserves B - tree properties

C. Faloutsos 15-826

8

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 22

B-trees

Easy case: Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 23

B-trees

Tree T0; insert ‘8’

1 3

6

7

9

13

<6

>6 <9 >9

8

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 24

B-trees

Hardest case: Tree T0; insert ‘2’

1 3

6

7

9

13

<6

>6 <9 >9

2

C. Faloutsos 15-826

9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 25

B-trees

Hardest case: Tree T0; insert ‘2’

1 2

6

7

9

13 3

push middle up

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 26

B-trees

Hardest case: Tree T0; insert ‘2’

6

7

9

13 1 3

2 2 Ovf; push middle

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 27

B-trees

Hardest case: Tree T0; insert ‘2’

7

9

13 1 3

2

6
Final state

C. Faloutsos 15-826

10

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 28

B-trees: Insertion

•  Q: What if there are two middles? (eg, order
4)

•  A: either one is fine

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 29

B-trees: Insertion

•  Insert in leaf; on overflow, push middle up
(recursively – ‘propagate split’)

•  split: preserves all B - tree properties (!!)
•  notice how it grows: height increases when

root overflows & splits
•  Automatic, incremental re-organization

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 30

Overview

•  B – trees
– Dfn, Search, insertion, deletion

•  B+ - trees

•  hashing

C. Faloutsos 15-826

11

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 31

Deletion

Rough outline of algo:
•  Delete key;
•  on underflow, may need to merge

In practice, some implementors just allow underflows to
happen…

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 32

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1 3

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 33

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9 >9

C. Faloutsos 15-826

12

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 34

B-trees – Deletion

Easiest case: Tree T0; delete ‘3’

1

6

7

9

13

<6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 35

B-trees – Deletion

•  Case1: delete a key at a leaf – no underflow
•  Case2: delete non-leaf key – no underflow
•  Case3: delete leaf-key; underflow, and ‘rich

sibling’
•  Case4: delete leaf-key; underflow, and ‘poor

sibling’

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 36

B-trees – Deletion

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

C. Faloutsos 15-826

13

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 37

B-trees – Deletion

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 3 7

9

13

<6

>6 <9 >9

Delete &
promote, ie:

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 38

B-trees – Deletion

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<6

>6 <9 >9

Delete &
promote, ie: 3

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 39

B-trees – Deletion

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

1 7

9

13

<3

>3 <9 >9
3

FINAL TREE

C. Faloutsos 15-826

14

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 40

B-trees – Deletion

•  Case2: delete a key at a non-leaf – no
underflow (eg., delete 6 from T0)

•  Q: How to promote?
•  A: pick the largest key from the left sub-tree

(or the smallest from the right sub-tree)
•  Observation: every deletion eventually

becomes a deletion of a leaf key

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 41

B-trees – Deletion
•  Case1: delete a key at a leaf – no underflow
•  Case2: delete non-leaf key – no underflow
•  Case3: delete leaf-key; underflow, and ‘rich

sibling’
•  Case4: delete leaf-key; underflow, and ‘poor

sibling’

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 42

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

Delete &
borrow, ie:

C. Faloutsos 15-826

15

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 43

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 44

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’

•  ‘rich’ = can give a key, without
underflowing

•  ‘borrowing’ a key: THROUGH the
PARENT!

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 45

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

Rich sibling

NO!!

C. Faloutsos 15-826

16

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 46

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

6 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 47

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1 3

9

13

<6

>6 <9 >9

Delete &
borrow, ie:

6

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 48

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<6

>6 <9 >9

Delete &
borrow, ie:

6

C. Faloutsos 15-826

17

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 49

B-trees – Deletion

•  Case3: underflow & ‘rich sibling’ (eg.,
delete 7 from T0)

1

3 9

13

<3

>3 <9 >9

Delete &
borrow,
through the
parent

6

FINAL TREE

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 50

B-trees – Deletion
•  Case1: delete a key at a leaf – no underflow
•  Case2: delete non-leaf key – no underflow
•  Case3: delete leaf-key; underflow, and ‘rich

sibling’
•  Case4: delete leaf-key; underflow, and ‘poor

sibling’

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 51

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9

13

<6

>6 <9 >9

C. Faloutsos 15-826

18

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 52

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9 <6

>6 <9 >9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 53

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

9 <6

>6 <9 >9

A: merge w/
‘poor’ sibling

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 54

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

•  Merge, by pulling a key from the parent
•  exact reversal from insertion: ‘split and push

up’, vs. ‘merge and pull down’
•  Ie.:

C. Faloutsos 15-826

19

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 55

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6

A: merge w/
‘poor’ sibling

9

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 56

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’ (eg.,
delete 13 from T0)

1 3

6

7

<6

>6
9

FINAL TREE

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 57

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’
•  -> ‘pull key from parent, and merge’
•  Q: What if the parent underflows?

C. Faloutsos 15-826

20

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 58

B-trees – Deletion

•  Case4: underflow & ‘poor sibling’
•  -> ‘pull key from parent, and merge’
•  Q: What if the parent underflows?
•  A: repeat recursively

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 59

Overview

•  B – trees

•  B+ - trees, B*-trees

•  hashing

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 60

B+ trees - Motivation
if we want to store the whole record with the

key –> problems (what?)

1 3

6

7

9

13

<6

>6 <9 >9

C. Faloutsos 15-826

21

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 61

Solution: B+ - trees

•  They string all leaf nodes together

•  AND

•  replicate keys from non-leaf nodes, to make
sure every key appears at the leaf level

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 62

B+ trees

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 63

B+ trees - insertion

1 3

6

6

9

9

<6

>=6 <9 >=9

7 13

Eg., insert ‘8’

C. Faloutsos 15-826

22

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 64

Overview

•  B – trees

•  B+ - trees, B*-trees

•  hashing

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 65

B*-trees

•  splits drop util. to 50%, and maybe increase
height

•  How to avoid them?

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 66

B*-trees: deferred split!
•  Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 3

6

7

9

13

<6

>6 <9 >9

2

C. Faloutsos 15-826

23

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 67

B*-trees: deferred split!
•  Instead of splitting, LEND keys to sibling!
(through PARENT, of course!)

1 2

3

6

9

13

<3

>3 <9 >9

2

7

FINAL TREE

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 68

B*-trees: deferred split!
•  Notice: shorter, more packed, faster tree
•  It’s a rare case, where space utilization and

speed improve together
•  BUT: What if the sibling has no room for

our ‘lending’?

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 69

B*-trees: deferred split!
•  BUT: What if the sibling has no room for

our ‘lending’?
•  A: 2-to-3 split: get the keys from the

sibling, pool them with ours (and a key
from the parent), and split in 3.

•  Details: too messy (and even worse for
deletion)

C. Faloutsos 15-826

24

CMU SCS

15-826 Copyright: C. Faloutsos (2011) 70

Conclusions
•  Main ideas: recursive; block-aware; on

overflow -> split; defer splits

•  All B-tree variants have excellent, O(logN)
worst-case performance for ins/del/search

•  B+ tree is the prevailing indexing method

•  More details: [Knuth vol 3.] or [Ramakrishnan &
Gehrke, 3rd ed, ch. 10]

