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Abstract. Given a large, weighted graph, how can we find anomalies?
Which rules should be violated, before we label a node as an anomaly?
We propose the OddBall algorithm, to find such nodes. The contribu-
tions are the following: (a) we discover several new rules (power laws) in
density, weights, ranks and eigenvalues that seem to govern the so-called
“neighborhood sub-graphs” and we show how to use them for anomaly
detection; (b) we carefully choose features, and design OddBall, so that
it is scalable and it can work un-supervised (no user-defined constants)
and (c) we report experiments on many real graphs with up to 1.6 mil-
lion nodes, where OddBall indeed spots unusual nodes that agree with
intuition.

1 Introduction

Given a real graph, with weighted edges, which nodes should we consider as
“strange”? Applications of this setting abound: For example, in network intru-
sion detection, we have computers sending packets to each other, and we want
to know which nodes misbehave (e.g., spammers, port-scanners). In a who-calls-
whom network, strange behavior may indicate defecting customers, or telemar-
keters, or even faulty equipment dropping connections too often. In a social net-
work, like FaceBook and LinkedIn, again we want to spot users whose behavior
deviates from the usual behavior, such as people adding friends indiscriminately,
in “popularity contests”.

The list of applications continues: Anomalous behavior could signify irregu-
larities, like credit card fraud, calling card fraud, campaign donation irregulari-
ties, accounting inefficiencies or fraud [7], extremely cross-disciplinary authors in
an author-paper graph [31], network intrusion detection [30], electronic auction
fraud [12], and many others.

In addition to revealing suspicious, illegal and/or dangerous behavior, anomaly
detection is useful for spotting rare events, as well as for the thankless, but ab-
solutely vital task of data cleansing [14]. Moreover, anomaly detection is inti-
mately related with the pattern and law discovery: unless the majority of our
nodes closely obey a pattern (say, a power law), only then can we confidently
consider as outliers the few nodes that deviate.

Most anomaly detection algorithms focus on clouds of multi-dimensional
points, as we describe in the survey section. Our goal, on the other hand, is
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to spot strange nodes in a graph, with weighted edges. What patterns and laws
do such graphs obey? What features should we extract from each node?

We propose to focus on neighborhoods, that is, a sphere, or a ball (hence the
name OddBall) around each node(the ego): that is, for each node, we consider
the induced sub-graph of its neighboring nodes, which is referred to as the egonet.
Out of the huge number of numerical features one could extract from the egonet
of a given node, we give a carefully chosen list, with features that are effective
in revealing outliers. Thus, every node becomes a point in a low-dimensional
feature space.

Main contributions of this work are:

1. Egonet patterns: We show that egonets obey some surprising patterns (like
the Egonet Density Power Law (EDPL), EWPL, ELWPL, and ERPL), which
gives us confidence to declare as outliers the ones that deviate. We support
our observations by showing that the ERPL yields the EWPL.

2. Scalable algorithm: Based on those patterns, we propose OddBall, a scalable,
un-supervised method for anomalous node detection.

3. Application on real data: We apply OddBall1 to numerous real graphs (DBLP,
political donations, and other domains) and we show that it indeed spots
nodes that a human would agree are strange and/or extreme.

Of course, there are numerous types of anomalies - we discuss several of them
in our technical report [3], but, for brevity, we focus on only the following major
types (see Fig.1 for examples and Section 2 for the dataset description):

1. Near-cliques and stars: Those nodes whose neighbors are very well con-
nected (near-cliques) or not connected (stars) turn out to be “strange”: in
most social networks, friends of friends are often friends, but either extreme
(clique/star) is suspicious.

2. Heavy vicinities: If person i has contacted n distinct people in a who-calls-
whom network, we would expect that the number of phone calls (weight)
would be proportional to n (say, 3xn or 5xn). Extreme total weight would
be suspicious, indicating, e.g., faulty equipment that forces redialing.

3. Dominant heavy links: In the who-calls-whom scenario above, a very heavy
single link in the 1-step neighborhood of person i is also suspicious, indi-
cating, e.g., a stalker that keeps on calling only one of his/her contacts an
excessive count of times.

The upcoming sections are as follows: We describe the datasets; the proposed
method and observed patterns; the experimental results; prior work; and finally
the conclusions.

2 Data Description

We studied several unipartite/bipartite, weighted/unweighted large real-world
graphs in a variety of domains, described in detail in Table 1. Particularly, uni-
partite networks include the following: Postnet contains post-to-post links in a
1 Source code of our algorithm can be found at www.cs.cmu.edu/~lakoglu/#tools
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(a) Near-star (b) Near-clique (c) Heavy vicinity (d) Dominant edge

Fig. 1. Types of anomalies that OddBall detects. Top row: toy sketches of egonets (ego
shown in larger, red circle). Bottom row: actual anomalies spotted in real datasets. (a)
A near-star in Postnet : instapundit.com/archives/025235.php, an extremely long
post on Hurricane Katrina relief agencies with numerous links to diverse other posts
about donations. (b) A near-clique in Postnet : sizemore.co.uk, who often linked to
its own posts, as well as to its own posts in other blogs. (c) A heavy vicinity in Postnet :
blog.searchenginewatch.com/blog has abnormally high weight w.r.t. the number of
edges in its egonet. (d) Dominant edge(s) in Com2Cand : In FEC 2004, George W. Bush
received a huge donation from a single committee: Democratic National Committee
(̃ $87M)(!) - in fact, this amount was spent against him; next heaviest link (̃ $25M):
from Republican National Committee.

set of blogs[23], Enron contains emails at Enron collected from about 1998 to
2002 (made public by the Federal Energy Regulatory Commission during its
investigation), and Oregon contains AS peering information inferred from Ore-
gon route-views BGP data. Bipartite networks include the following: Auth2Conf
contains the publication records of authors to conferences from DBLP, and
Don2Com and Com2Cand are from the U.S. Federal Election Commission in
20042, a public record of donations between donors and committees and be-
tween committees and political candidates, respectively.

For Don2Com and Com2Cand, the weights on the edges are actual weights
representing donation amounts in dollars. For the remaining weighted datasets,
the edge weights are simply the number of occurrences of the edges. For instance,
if post i contains k links to another post j, the weight of the edge ei,j is set to
k.

In our study, we specifically focused on undirected graphs, but the ideas can
easily be generalized to directed graphs.

2 Parsed dataset from all cycles can be found at www.cs.cmu.edu/~mmcgloho/

fec/data/fec data.html
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Name N E Weights Structure Description

Postnet 223K 217K Yes Unipartite Network of posts based on citations
Auth2Conf 421K 1M Yes Bipartite DBLP Author/Conference associations
Com2Cand 6K 125K Yes Bipartite 2004 US FEC Committee to Candidate

donations
Don2Com 1,6M 2M Yes Bipartite 2004 US FEC Donor to Committee do-

nations
Enron 36K 183K No Unipartite Email associations at Enron
Oregon 11K 38K No Unipartite AS peering connections

Table 1. Datasets studied in this work.

3 Proposed Method

Borrowing terminology from social network analysis (SNA), “ego” is an individ-
ual node.

Informally, an ego (=node) of a given network is anomalous if its neighbor-
hood significantly differs from those of others. The basic research questions are:
(a) what features should we use to characterize a neighborhood? and (b) what
does a ‘normal’ neighborhood look like?

Both questions are open-ended, but we give some answers below. First, let’s
define terminology: the “k -step neighborhood” of node i is the collection of node
i, all its k-step-away nodes, and all the connections among all of these nodes –
formally, this is the “induced sub-graph”. In SNA, the 1-step neighborhood of a
node is specifically known as its “egonet”.

How should we choose the value of k steps to study neighborhoods? Given
that real-world graphs have small diameter [4], we need to stay with small values
of k, and specifically, we recommend k=1. We report our findings only for k=1,
because using k > 1 does not provide any more intuitive or revealing information,
while it has heavy computational overhead, possibly intractable for very large
graphs.

3.1 Feature Extraction

The first of our two inter-twined questions is which statistics/features to extract
from a neighborhood.

There is an infinite set of functions/features that we could use to characterize
a neighborhood (number of nodes, one or more eigenvalues, number of triangles,
effective radius of the central node, number of neighbors of degree 1, etc etc).
Which of all should we use?

Intuitively, we want to select features that (a) are fast-to-compute and (b)
will lead us to patterns/laws that most nodes obey, except for a few anomalous
nodes. We spend a lot of time experimenting with about a dozen features, trying
to see whether the nodes of real graphs obey any patterns with respect to those
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features (see our technical report [3]). The majority of features lead to no obvious
patterns, and thus we do not present them.

The trimmed-down set of features that are very successful in spotting pat-
terns, are the following:

1. Ni: number of neighbors (degree) of ego i,
2. Ei: number of edges in egonet i,
3. Wi: total weight of egonet i,
4. λw,i: principal eigenvalue of the weighted adjacency matrix of egonet i.

The next question is how to look for outliers, in such an n-dimensional feature
space, with one point for each node of the graph. In our case, n=4, but one
might have more features depending on the application and types of anomalies
one wants to detect. A quick answer to this would be to use traditional outlier
detection methods for clouds of points using all the features.

In our setting, we can do better. As we show next, we group features into
carefully chosen pairs, where we show that there are patterns of normal behavior
(typically, power-laws). We flag those points that significantly deviate from the
discovered patterns as anomalous. Among the numerous pairs of features we
studied, the successful pairs and the corresponding type of anomaly are the
following:

– E vs N : CliqueStar : detects near-cliques and stars
– W vs E: HeavyVicinity : detects many recurrences of interactions
– λw vs W : DominantPair : detects single dominating heavy edge (strongly

connected pair)

3.2 Laws and Observations

The second of our research questions is what do normal neighborhoods look like.
Thus, it is important to find patterns (“laws”) for neighborhoods of real graphs,
and then report the deviations, if any. In this work, we report some new, sur-
prising patterns:

Observation 1 (EDPL: Egonet Density Power Law) For a given graph G,
node i ∈ V(G), and the egonet Gi of node i, the number of nodes Ni and the num-
ber of edges Ei of Gi follow a power law.

Ei ∝ Nα
i , 1 ≤ α ≤ 2.

In our experiments the EDPL exponent α ranged from 1.10 to 1.66. Fig. 2
illustrates this observation, for several of our datasets. Plots show Ei versus Ni

for every node (green points); the black circles are the median values for each
bucket of points (separated by vertical dotted lines) after applying logarithmic
binning on the x-axis as in [25]; the red line is the least squares(LS) fit on the
median points. The plots also show a blue line of slope 2, that corresponds to
cliques, and a black line of slope 1, that corresponds to stars. All the plots are
in log-log scales.
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Observation 2 (EWPL: Egonet Weight Power Law) For a given graph G,
node i ∈ V(G), and the egonet Gi of node i, the total weight Wi and the number
of edges Ei of Gi follow a power law.

Wi ∝ Eβ
i , β ≥ 1.

Fig. 3 shows the EWPL for (only a subset of) our datasets (due to space limit).
In our experiments the EWPL exponent β ranged up to 1.29. Values of β > 1
indicate super-linear growth in the total weight with respect to increasing total
edge count in the egonet.

Observation 3 (ELWPL: Egonet λw Power Law) the principal eigenvalue
λw,i of the weighted adjacency matrix and the total weight Wi of Gi follow a
power law.

λw,i ∝ W γ
i , 0.5 ≤ γ ≤ 1.

Fig. 4 shows the ELWPL for a subset of our datasets. In our experiments the
ELWPL exponent γ ranged from 0.53 to 0.98. γ=0.5 indicates uniform weight
distribution whereas γ̃ 1 indicates a dominant heavy edge, in which case the
weighted eigenvalue follows the maximum edge weight. γ=1 if the egonet contains
only one edge.

Observation 4 (ERPL: Egonet Rank Power Law) the rank Ri,j and the
weight Wi,j of edge j in Gi follow a power law.

Wi,j ∝ Rθ
i,j , θ ≤ 0.

The ERPL suggests that edge weights in the egonet have a skewed distribution.
This is intuitive; for example in a friendship network, a person could have many
not-so-close friends (light links), but only a few close friends (heavy links).

Next we show that if the ERPL holds, then the EWPL also holds. Given an
egonet graph Gi, the total weight Wi and the number of edges Ei of Gi, let Wi

denote the ordered set of weights of the edges, Wi,j denote the weight of edge j,
and Ri,j denote the rank of weight Wi,j in set Wi. Then,

Lemma 1. ERPL implies EWPL, that is: If Wi,j ∝ Rθ
i,j, θ ≤ 0, then

Wi ∝ Eβ
i

{
β = 1, if −1 ≤ θ ≤ 0
β > 1, if θ < −1

Proof. For brevity, we give the proof for θ < −1 – other cases are similar. Given
that Wi,j = cRθ

i,j , Wmin = cEθ
i , i.e. c = WminE−θ

i . Then we can write Wi as

Wi = WminE−θ
i

 Ei∑
j=1

jθ

 ≈ WminE−θ
i

(∫ Ei

j=1

jθdj

)

= WminE−θ
i

(
jθ+1

θ + 1

∣∣∣Ei

j=1

)
= WminE−θ

i

(
1

−θ − 1
− 1

(−θ − 1)E−θ−1
i

)
For large Ei and considering θ < −1, the second term in parenthesis goes to 0.
Therefore; Wi ≈ c′E−θ

i , where c′ = Wmin

−θ−1 , and since θ < −1, β > 1. ut
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3.3 Anomaly Detection

We can easily use the observations given in part 3.2 in anomaly detection since
anomalous nodes would behave away from the normal pattern. Let us define
the y-value of a node i as yi and similarly, let xi denote the x-value of node i
for a particular feature pair f(x, y). Given the power law equation y = Cxθ for
f(x, y), we define the outlierness score of node i to be

out-line(i) =
max(yi, Cxθ

i )
min(yi, Cxθ

i )
∗ log(|yi − Cxθ

i |+ 1)

Intuitively, the above measure is the “distance to fitting line”. Here we penalize
each node with both the number of times that yi deviates from its expected value
Cxθ

i given xi, and with the logarithm of the amount of deviation. This way, the
minimum outlierness score becomes 0 –for which the actual value yi is equal to
the expected value Cxθ

i .
This simple and easy-to-compute method not only helps in detecting outliers,

but also provides a way to sort the nodes according to their outlierness scores.
However, this method is prone to yield false positives for the following reason:
Assume that there exists some points that are far away from the remaining points
but that are still located close to the fitting line. In our experiments with real
data, we observe that usually happens for high values of x and y. For example,
in Fig. 2(a), the points marked with left-triangles (C) are almost on the fitting
line even though they are far away from the rest of the points.

We want to flag both types of points as outliers, and thus we propose to
combine our heuristic with a density-based outlier detection technique. We used
LOF [8], which also assigns outlierness scores out-lof(i) to data points; but any
other outlier detection method would do, as long as it gives such a score. To
obtain the final outlierness score of a data point i, one might use several methods
such as taking a linear function of both scores and ranking the nodes according
to the new score, or merging the two ranked lists of nodes, each sorted on a
different score. In our work, we simply used the sum of the two normalized(by
dividing by the maximum) scores, that is, out-score(i) = out-line(i)+out-lof(i).

4 Experimental Results

CliqueStar Here, we are interested in the communities that the neighbors of a
node form. In particular, CliqueStar detects anomalies having to do with near-
cliques and near-stars. Using CliqueStar, we were successful in detecting many
anomalies over the unipartite datasets (although it is irrelevant for bipartite
graphs since by nature the egonet forms a “star”).

In social media data Postnet, we detected posts or blogs that had either
all their neighbors connected (cliques) or mostly disconnected (stars). We show
some illustrative examples along with descriptions from Postnet in Fig. 1. See
Fig.2a for the detected outliers on the scatter-plot from the same dataset.
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In Enron(Fig.2b), the node with the highest anomaly score turns out to be
“Kenneth Lay”, who was the CEO and is best known for his role in the Enron
scandal in 2001. Our method reveals that none of his over 1K contacts ever sent
emails to each other.

In Oregon (Fig.2c), the top outliers are the three large ISPs (“Verizon”,
“Sprint” and “AT&T”).
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Fig. 2. Illustration of the Egonet Density Power Law (EDPL), and the corresponding
anomaly CliqueStar, with outliers marked with triangles. Edge count versus node count
(log-log scale); red line is the LS fit on the median values (black circles); dashed black
and blue lines have slopes 1 and 2 respectively, corresponding to stars and cliques. Most
striking outlier: Ken Lay (CEO of Enron), with a star-like neighborhood. See Section
5.1.1 for more discussion and Fig.1 for example illustrations from Postnet.

HeavyVicinity In our datasets, HeavyVicinity detected “heavy egonets”, with
considerably high total edge weight compared to the number of edges. We mark
the anomalies in Fig.3 for several of our datasets. See [3] for results on all the
datasets and further discussions.

In Com2Cand(Fig.3a), we see that “Democratic National Committee” gave
away a lot of money compared to the number of candidates that it donated to.
In addition, “(John) Kerry Victory 2004” donated a large amount to a single
candidate, whereas “Liberty Congressional Political Action Committee” donated
a very small amount ($5), again to a single candidate. Looking at the Candidates
plot for the same bipartite graph (Fig.3b), we also flagged “Aaron Russo”, the
lone recipient of that PAC. (In fact, Aaron Russo is the founder of the Consti-
tution Party which never ran any candidates, and Russo shut it down after 18
months.)

In Don2Com(Fig.3c), we see that “Bush-Cheney ’04 Inc.” received a lot
of money from a single donor. On the other hand, we notice that the “Kerry
Committee” received less money than would be expected looking at the number
of checks it received in total. Further analysis shows that most of the edges in
its egonet are of weight 0, showing that most of the donations to that committee
have actually been returned.
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Fig. 3. Illustration of the Egonet Weight Power Law (EWPL) and the weight-edge
anomaly HeavyVicinity. Plots show total weight vs. total count of edges in the egonet
for all nodes (in log-log scales). Detected outliers include Democratic National Com-
mittee and John F. Kerry (in FEC campaign donations). See Section 5.2.1 for more
discussions.
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Fig. 4. Illustration of the Egonet λw Power Law (ELWPL) and the dominant heavy
link anomaly DominantPair. Top anomalies are marked with triangles and labeled.
See Section 5.2.2 for detailed discussions for each dataset and Fig.1 for an illustrative
example from Com2Cand.

DominantPair Here, we find out whether there is a single dominant heavy
edge in the egonet. In other words, this method detected “bursty” if not exclusive
edges.

In Postnet(Fig.4a) nodes such as “ThinkProgress”’s post on a leak scandal3

and “A Freethinker’s Paradise” post4 linking several times to the “ThinkProgress”
post were both flagged. On another note, the slope of the fitting line is close to
0.5, pointing to uniform weight distribution in egonets overall. This is expected
as most posts link to other posts only once.

In Com2Cand(Fig.4b), “Democratic National Committee” is one of the top
outliers. We would guess that the single large amount of donation was made
to “John F. Kerry”. Counterintuitively, however, we see that that amount was
spent for an opposing advertisement against “George W. Bush”.

3 www.thinkprogress.org/leak-scandal
4 leados.blogs.com/blog/2005/08/overview of cia.html
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DominantPair flagged extremely focused authors (those publish heavily to
one conference) in the DBLP data, shown in Fig.3c. For instance, “Toshio
Fukuda” has 115 papers in 17 conferences (at the time of data collection), with
more than half (87) of his papers in one particular conference (ICRA). In ad-
dition, “Averill M. Law” has 40 papers published to the “Winter Simulation
Conference” and nowhere else. On the other extreme, another interesting point
is “Wei Li”, with many papers, who gets them published to as many distinct
conferences, probably once or twice to each conference (uniform rather than
‘bursty’ distribution).

See [3] for results on all the datasets and further discussions.

5 Related Work

5.1 Outlier Detection

Outlier detection has attracted wide interest, being a difficult problem, despite
its apparent simplicity. Even the definition of the outlier is hard to give: For
instance, Hawkins [18] defines an outlier as “an observation that deviates so
much from other observations as to arouse suspicion that it was generated by a
different mechanism.” Similar, but not identical, definitions have been given by
Barnett and Lewis [6], and Johnson [21].

Outlier detection methods form two classes, parametric (statistical) and non-
parametric (model-free). The former includes statistical methods that assume
prior knowledge of the underlying data distribution [6, 18]. The latter class in-
cludes distance-based and density-based data mining methods. These methods
typically define as an outlier the (n-D) point that is too far away from the rest,
and thus lives in a low-density area [22]. Typical methods include LOF [8] and
LOCI [29]. These methods not only flag a point as an outlier but they also give
outlierness scores; thus, they can sort the points according to their “strangeness”.
Many other density-based methods especially for large high-dimensional data
sets are proposed in [1, 5, 13, 17]. Finally, most clustering algorithms [11, 19, 27]
reveal outliers as a by-product.

5.2 Anomaly Detection in Graph Data

Noble and Cook [28] detect anomalous sub-graphs using variants of the Mini-
mum Description Length (MDL) principle. Eberle and Holder [15] use MDL as
well as other probabilistic measures to detect several types of anomalies (e.g.
unexpected/missing nodes/edges). Frequent subgraph mining [20, 32] is used to
detect non-crashing bugs in software flow graphs [24]. Chakrabarti [9] uses MDL
to spot anomalous edges. Sun et al. [31] use proximity and random walks, to
assess the normality of nodes in bipartite graphs. OutRank and LOADED [16,
26] use similarity graphs of objects to detect outliers.

In contrast to the above, we work with unlabeled graphs. We explicitly focus
on nodes, while interactions are also considered implicitly as we study neigh-
borhood sub-graphs. Finally, we consider both bipartite and unipartite graphs as
well as edge weights.
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5.3 Real-world graph properties

Several properties of real-world unweighted graphs have been discovered, sur-
veyed in [10]. In our study, we explicitly concentrate on anomalous node detec-
tion in weighted graphs, adding to laws of weighted graphs discovered in [2, 25]
and relying on these observations to detect anomalies.

6 Conclusion

This is one of the few papers that focus on anomaly detection in graph data,
including weighted graphs. We propose to use “egonets”, that is, the induced sub-
graph of the node of interest and its neighbors; and we give a small, carefully
designed list of numerical features for egonets. The major contributions are the
following:

1. Discovery of new patterns that egonets follow, such as patterns in density
(Obs.1: EDPL), weights (Obs.2: EWPL), principal eigenvalues (Obs.3: EL-
WPL), and ranks (Obs.4: ERPL). Proof of Lemma 1, linking the ERPL to
the EWPL.

2. OddBall, a fast, un-supervised method to detect abnormal nodes in weighted
graphs. Our method does not require any user-defined constants. It also
assigns an “outlierness” score to each node.

3. Experiments on real graphs of over 1M nodes, where OddBall reveals nodes
that indeed have strange or extreme behavior.

Future work could generalize OddBall to time-evolving graphs, where the chal-
lenge is to find patterns that neighborhood sub-graphs follow and to extract
features incrementally over time.
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