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ABSTRACT
In a mobile communication network, if user i calls/texts user j n
times, what can we say about the number of times j calls/texts i?
Also, given a user has k contacts, can we say anything about the
total number/duration of his/her phone-calls/SMSs? In this work,
we study two real communication networks of millions of users
registered to an anonymous mobile phone company in a large city:
a Mobile Call Graph(MCG) and a Mobile Text Graph(MTG) and
answer these questions.

Such real graphs were found to exhibit many common patterns
for example in degree distribution of nodes. Those patterns are
usually modeled by univariate distributions such as power laws,
log-normals, double Pareto log-normals, etc. In this paper, we take
one step ahead and study bivariate distributions. Our main contri-
butions are: (1) we observe bivariate patterns in (a) the joint distri-
bution of weights on reciprocated edges, Prob(wij , wji); and (b)
the joint distribution of degree and strength of nodes, Prob(k, s) in
the MCG and MTG. We observe that these patterns show skewed
characteristics and so summarization by the mean and the median
often give different, even conflicting insights. Instead, (2) we pro-
pose two bivariate functions, namely the Triple Power-Law(3PL)
and the Cascaded Log-Normal(CLN), to fit the observed patterns
in (a) and (b), respectively. We show how to estimate parameters of
the proposed functions and that our fitting of parameters can model
the real distributions in MCG and MTG with up to 2M nodes and
42M edges well.

1. INTRODUCTION
Looking at the data is a vital part of understanding it. In data

mining, many researchers usually start analyzing their data by vi-
sualizing it. For example for graph data, visualization of the nodes
and the edges in different layouts could be very helpful in under-
standing the global structure and the high-level connectivity in gen-
eral. In fact, data summarization and visualization is a widely stud-
ied research area by itself [7, 14, 27, 28, 29].

Another basic step to understand the data in hand is to study the
simple distributions in it. For example, one could look at the degree
distribution of nodes in a graph, or the distribution of city popula-
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tions in a country to get insights about how a particular quantity
(degree, population, etc.) is distributed among data (nodes, cities,
etc.). Such distributions in real data were found to obey several
parametric univariate distributions such as power-laws [9], log-
normals [5], and recently new distributions such as DPLNs [30].
The study of multivariate distributions in real data, on the other
hand, has very limited focus (Section 2).

In this paper, we take one step ahead and study bivariate patterns
in two real mobile communication networks of millions of users; a
Mobile phone-Call Graph(MCG) and a Mobile Text(SMS) Graph
(MTG) (Section 3). Our main focus is in the study of reciprocity
and edge weights. Informally, we give answers to the following
questions: In a mobile phone-call graph of users, if user i calls user
j n times, what can we say about the number of times j calls i?
Also, given a user with k contacts, what can we say about the to-
tal number/duration of his/her phone-calls? How about in a mobile
SMS graph? More formally, (how) can we model the joint distri-
bution of (1) the weights (wij , wji) on reciprocal edges (eij , eji)
between pairs of nodes (i, j); and (2) the degree and strength (k, s)
of nodes? (here, the strength of a node is defined as the total weight
of the edges attached to it).

The motivation behind this work is as follows:

• Characterization of bivariate distributions in real data is lim-
ited (Section 2.2).

• Visualization is usually misleading due to over-plotting.
• Summarization by average or median values is not represen-

tative for skewed distributions and often the two give differ-
ent insights (Section 4).

• A better representation and formulation of multivariate data
is fundamental.

Main contributions of this work are the following:

1. We propose the Triple Power-Law(3PL) to formulate the dis-
tribution of nodes with given degree k and strength s;

2. We propose the Cascaded Log-Normal(CLN) to formulate
the distribution of reciprocal edge pairs (eij , eji) with given
respective weights (wij , wji).

3. We show how to estimate parameters for the proposed func-
tions and that our proposed functions and fitting of parame-
ters model the real distributions in the MCG and MTG well
(Section 5).

Additional contributions are:

1. We observe that the bivariate distributions in MCG and MTG
are very skewed and so 2D visualization could be misleading
due to high over-plotting (Section 4.1).

2. We show that there exists a conundrum between mean and
median values in summarization and that for skewed distri-
butions the two give different results (Section 4.2).



2. BACKGROUND AND RELATED WORK
In this section, we provide background on several skewed uni-

variate and bivariate distributions observed in real graphs such as
power-laws and log-normal distributions. We also give a brief sur-
vey of prior work on mobile communication networks.

2.1 Univariate Distributions in Real Data
A quantity x follows a power-law if it is drawn from a proba-

bility distribution p(x) ∝ x−α, where α is called the power law
exponent. Many patterns regarding power-laws have been found
to occur in real graphs and social networks. For example, the de-
gree distribution obeys a power-law in many real graphs from a
large variety of domains such as the Internet Autonomous Systems
graph [13], the WWW link graph [3, 6], several phone-call graphs
[1, 2], and many more [8, 16, 18, 22]. Additional power laws seem
to govern the popularity of posts in citation networks, which drops
over time, with power law exponent of -1 for paper citations [26]
or -1.5 for blog posts [19].

A recent comprehensive study [9] on power-law distributions in
empirical data shows that while power-laws exist in many graphs,
deviations from a pure power-law are also observed. Those devi-
ations usually appear in the form of exponential cut-offs and log-
normals. Similar deviations were also observed in [4] where the
electric power-grid graph in a specific region in California as well
as airport networks were found to exhibit power-law distributions
with exponential cut-offs. Also, [25] observe that subsets of the
WWW, for example university homepages, deviate significantly
from a power-law distribution.

Discrete Gaussian Exponential(DGX) [5] was also shown to pro-
vide good fits to distributions in a variety of real world datasets
such as the Internet click-stream data and usage data from a mo-
bile phone operator. Most recently, [30] studied several phone-call
networks and proposed a new distribution called the Double Pareto
Log-Normal(DPLN) for the per-user number of call partners, num-
ber of calls and number of minutes.

2.2 Bivariate Distributions in Real Data
While univariate distributions are used to model the distribution

of a specific quantity x, for example the number of calls of users,
bivariate distributions are used to model the association and co-
variation between two quantitative variables x and y. Association
is based on how two variables simultaneously change together, for
example the number of calls w.r.t. the number of call partners of
users.

Unlike univariate distributions, the study of multivariate distribu-
tions has been limited to theoretical analysis of such distributions in
mathematics and statistics. On the other hand, multivariate analysis
in real data has much less focus. [32] uses the bivariate log-normal
distribution to describe the joint distributions of flood peaks and
volumes, and flood volumes and durations. Also, [20] studies the
drought in the state of Nebraska and models the duration and sever-
ity, proportion and inter-arrival time, and duration and magnitude
of drought with bivariate Pareto distributions.

2.3 Study of Mobile Phone Graphs
Social networks of mobile phone users have been previously

studied in the literature. For example Onnela et. al. [23, 24] study
the local and global structure of a large communication network
and show that there exists coupling between interaction strengths
and local neighborhoods of individuals. Nanavati et. al. [21] study
the structure and the global shape of four geographically disparate
mobile call graphs and propose the Treasure-Hunt model to fit their
observations. [10] analyze the number and size of the triangles

and maximal cliques that users participate in phone networks and
find patterns in their distributions. [31] study the formation of
social communities in temporal telecommunications records. Fi-
nally, Eagle et. al. [11, 12] study massive amounts of mobile phone
records and infer social structure and behavior of users by their
mobile phone interactions.

3. DATA DESCRIPTION
In this work, we studied anonymous mobile communication records

of millions of users over a time period of six months. The dataset
not only contains phone-call but also SMS interactions. The data
spans from December 1, 2007 through May 31, 2008 (183 days). It
contains all the interactions between the within-network users (ac-
tual customers) as well as incoming/outgoing interactions from/to
out-of-network users.

The data is in the form of callerID, calleeID, date/time-of-call/text,
duration (in seconds, only for phone-calls). From the whole six
months’ of activity, we built two graphs in which nodes represent
users and directed edges represent (phone-call and SMS) interac-
tions between these users. We call the who-calls-whom graph as
the MCG (for Mobile Call Graph) and the who-texts-whom graph
as the MTG (Mobile Text Graph).

By construction, our graphs are weighted. Here, we consider two
types of weights on the arcs eij : (1) total number of phone-calls
wN , similarly total number of SMSs wSMS ; and (2) total duration
of phone-calls wD from node i to j (only for MCG, aggregated in
10 minutes).

There are two choices that we made to construct the MCG and
MTG. Firstly, since only the activity of within-network customers
can be tracked, our data does not contain all the interactions of out-
of-network users. Thus, as we have only partial information about
the out-of-network users, we decided to include only the within-
network customers and the interactions among themselves in our
graphs. Secondly, our graphs include only reciprocated edges be-
tween nodes. The reason is, as [23] point out in their study of
a similar network, we consider only mutual interactions between
node i and node j to be “real”. That is, we believe that two nodes
actually interact only if for example i calls j and j also calls i. We
will denote the smaller weight on the reciprocal edges as nST and
the larger weight as nTS , (S for Silent and T for Talkative).

To give a sense of the scale of the data we studied, we show the
number of customers N (with at least one contact), the number of
directed interactions Edir , the total number of phone-calls/SMSs,
WN,SMS and the total duration of phone-calls WD , for both the
mutual and non-mutual MCG and MTG in Table 1 (note that we
performed experiments only on the mutual networks as we dis-
cussed earlier). Notice that the MTG shrinks considerably when
only mutual edges are considered, whereas MCG remains almost
intact. This shows that the vast majority of SMS interactions occur
non-mutually suggesting for spam messages.

Network N Edir WN,SMS WD(sec.s)

MCG(non-mutual) 1,87M 49,50M 483,7M 5,49x1010

MCG(mutual) 1,75M 41,84M 468,7M 5,31x1010

MTG(non-mutual) 1,87M 8,70M 119,5M N/A
MTG(mutual) 0,53M 1,99M 91,8M N/A

Table 1: The number of nodes N , the number of edges E, and
the total weight W in the mutual and non-mutual MCG and
MTG. Note the sharp drop in the size of the MTG when only
mutual edges are considered.



(a1) node strength sN vs. degree k (a2) its heatmap (d1) nTS vs. nST (wN ) (d2) its heatmap

(b1) median sN /degree (b2) mean sN /degree (e1) median nTS /nST (e2) mean nTS /nST

(c1) median sN /bin (c2) mean sN /bin (f1) median nTS /bin (f2) mean nTS /bin

Figure 1: (top row) Visualization by scatter plots loses information due to over-plotting. 2D heatmaps recover the missing informa-
tion, highlighting the density of regions (figures best viewed in color, dark blue is denser, dark red is sparser). (bottom two rows)
Conundrum between mean and median: median suggests super-linear, whereas mean suggests (sub-)linear growth for (left) strength
sN w.r.t. degree k; and (right) edge weight nTS w.r.t. nST , where weights denote the number of phone-calls wN in MCG.

4. OBSERVATIONS AND ISSUES
In this section we introduce the problem we are looking at and

give the motivation behind our work.
Our main goal in this paper is to analyze the covariation between

pairs of features (F1, F2) of nodes and edges in our mobile graphs
MCG and MTG. That is, we want to understand how feature F1

changes when feature F2 changes among nodes/edges. In particu-
lar, we studied two feature pairs.

1. f(strength s, degree k) among nodes: Here, we want to
understand how the strength s (total weight) changes with
increasing degree k among nodes in the MCG and MTG. In
other words, we study how the total number of phone-calls
sN , SMSs sSMS and the total duration sD a user spends on
the phone is affected by the number of his/her contacts.

2. f(nST , nTS) among reciprocal edges: Here, we analyze
how the larger weight nTS is affected by a change in the
smaller weight nST among mutual edges in the MCG and
MTG. In other words, we want to understand how the num-
ber of phone-calls/SMSs from node i to j is related to those
from node j to node i.

4.1 Over-plotting in visualization
Figure 1(a1) shows the scatter plot of the strength s versus degree

k for all the nodes in the MCG, where the strength of a user denotes
the total number of his/her phone-calls sN . Each green dot in the
plot corresponds to a node in the graph. As one can imagine, there
exists a lot of over-plotting in the shown figure and therefore the
densities of regions are not clear. To alleviate this problem, one can

instead look at the 3D histogram plots or 2D heatmaps where colors
represent the magnitude of volume. In Figure 1(a2), we show the
heatmap for the same plot. We observe that there are a lot of points
around the origin which points to a majority of small degree nodes
with correspondingly small total weights in the graph.

Similarly, Figure 1(d1) shows the weights nTS versus nST for
all the reciprocal edges in the MCG, where weights denote the total
number of phone-calls wN . Each green dot in the plot corresponds
to a pair of mutual edges. Again, there is over-plotting in the shown
figure and therefore the densities of regions are not clear. In Figure
1(d2), we show the heatmap for the same plot. Notice that most of
the edges are concentrated (1) around the origin and then (2) close
to the diagonal. (1) suggests that most of the edges have small
weights whereas fewer edges have very high weights, which points
to skewness. In addition, (2) indicates that it is highly probable that
i and j call each other in a more balanced fashion, that is, around
the same number of times.

To summarize, in order to understand the distribution of points
in 2D, one should consider over-plotting and treat it carefully.

4.2 Conundrum between mean and median
In order to formulate the bivariate distributions we mentioned in

the previous section, for example how the node strength changes
with degree, one can compute an aggregate function (e.g. the av-
erage) of the node strengths of the nodes with a given degree. Fig-
ure 1(b1) and Figure 1(b2) show the median and the mean node
strength sN for a given degree k, respectively. The number of
nodes with degree higher than 100 is very small and therefore we
treat the points beyond that value on the x-axis as noise and observe



Figure 2: (left) Conundrum between the median and the mean for (from top to bottom) total duration sD vs. degree k (with respective
slopes 1.20,0.80), number of SMSs sSMS vs. degree k (1.44,1.13), nTS vs. nST (wD) (1.03,0.99), and nTS vs. nST (wSMS) (0.94,0.77).
(right) Logarithmic binning also gives similar results. See text for details.

that a Least Squares(LS) line can be fit to the rest of the points. The
line fit to (x, y) points on log-log scales suggests a power-law rela-
tion in the form of y ∝ xα.

Another method to summarize 2D data is to divide the data points
into chunks after logarithmically binning the x-axis [22] and com-
puting the mean/median of the points in each bin (this is to account
for the sparsifying nature of the data with increasing x). In Fig-
ures 1(c1,2;f1,2), dashed vertical lines show the boundaries of each
bin. The blue dots correspond to the mean/median values computed
over the points in each bin. Again, the red lines show the LS fits to
the blue dots.

The main point we want to make here is that, the power-law ex-
ponent α is greater than 1 for the median fit (Fig.1(b1,c1)), which
suggests a super-linear growth in strength with increasing degree,
whereas it is less than 1 (or around 1) for the mean fit (Fig.1(b2,c2)),
which on the contrary suggests a (sub-)linear growth. More intu-
itively, mean fit indicates that a user with higher number of friends
spends less time per friend on average than a user with fewer friends.
On the other hand, median fit suggests that the more friends one
talks to, super-linearly more time s/he will spend on the phone in
total. In addition, we observe a similar conflict on the reciprocal
edge weights wN (Figure 1(e1,e2) and (f1,f2)), though the power-
law exponents are relatively close in this case.

We note that the same conundrum between the mean and the
median also occurs in the MTG and when the weights are taken to
be the total duration of phone-calls wD in MCG. See Figure 2.

All in all, we observed that there exist bivariate patterns in the
mobile communication graphs MCG and MTG in (1) the distribu-
tion of the strengths sN , sD , sSMS and the degree among nodes;
and (2) the distribution of the edge weights wN , wD , wSMS among
reciprocal edges. We also showed that summarizing these distribu-

tions by aggregation could give different insights, in particular, that
the mean and the median fall into conundrum.

5. BIVARIATE PATTERNS IN MCG AND MTG
In this section, we delve more into the details of the observed

patterns. As an alternative to summarization/aggregation, we pro-
pose bivariate functions to fit these observed distributions. We also
provide parameter fitting routines to the proposed functions.

5.1 Patterns in Reciprocal Edge Weights
Given a network of customers with mutual, weighted edges be-

tween them, we want to understand the association between the
weights on the reciprocal edge pairs. In other words, given two
nodes i and j, say in MCG, is there a relation between the num-
ber of calls i makes to j (nij) and the number of calls j makes to i
(nji)? To ease notation, we will denote the smaller of these weights
as nST (for Silent-to-Talkative), and the larger as nTS .

Figure 3 shows the distribution of weight ratios nT S
nST

of all re-
ciprocal edge pairs (a) in MCG with weights wN as number of
phone-calls, (b) in MCG with weights wD as total duration ag-
gregated in 10 minutes, and (c) in MTG with weights wSMS as
number of SMSs. We observe that the distribution of the weight ra-
tios in all three cases follow layers of power-laws. Fitting LS lines
to the top three so-called “layers” of points in log-log scales, we
notice that the power-law fits have similar exponents with shifted
intercepts –many 1, 2, 3, . . .; fewer 1.5, 2.5, 3.5, . . .; even fewer
1.33, 1.66, 2.33, . . .; and so on.

In order to visualize the relation between nST and nTS , we plot
the bivariate data points in a scatter plot in Figure 5(left), using 2D
heatmap, and contour plots for weights (from top to bottom) wN ,
wD and wSMS , respectively. We notice that in all three types of



(a) wN (b) wD (c) wSMS

Figure 3: Distribution of the ratio of weights on reciprocal edges nT S
nST

follows “layers” of power-laws with similar exponents for all
three types of weights (a) number of phone-calls wN , (b) duration of phone-calls wD , and (c) number of SMSs wSMS .

weights, majority of the points are concentrated around the origin.
Also, while the volume decreases with increasing nTS for a fixed
nST , the volume seems to increase with increasing nST for a fixed
nTS –hence the higher volume along the diagonal.

To further analyze the co-variation between nST and nTS , we
looked at the distributions P (nTS |nST = x) and P (nST |nTS =
y) for x and y up to 100. One can imagine this as looking at the dis-
tribution of points on vertical and horizontal “slices”. For brevity,
we show the distributions for x ={2,8}; and for y ={80,100} in
Figure 4(a) and (b) for wN and wD , respectively (all the rest look
similar). Here, we observe that P (nTS |nST = x) follows a power-
law distribution with an “elbow” shape. That is, we can fit two
power-laws; one for the relatively smaller values of x and another
for the rest with an often larger exponent (blue and red lines in the
same figures). We mark the “elbow” point with a vertical black
dashed line. On the other hand, we observe that P (nST |nTS = y)
decreases slowly with small oscillations, and then follows a power-
law with a negative exponent.

For wSMS the above argument holds with an interesting devia-
tion. In Figure 4(c), we plot P (nTS |nST = x) for x ={1,2}, and
notice that the data follows two trends of power-laws. We realize
that here, one power-law can be fit to nTS of even values (green
dots) and another with a larger exponent to the odd values (blue
dots). This indicates that the weights on edges in the MTG are
more likely to be even. Although we do not have a clear explana-
tion for this, we think that when it comes to SMS, users might be
communicating in a 4-way handshake procedure, that is, Question-
Answer-ACK-ACK; which accounts for two messages per user at a
time. On the other hand, P (nST |nTS = y) follows a similar pat-
tern as above and decreases slowly with small oscillations for even
nST with no clear increase as with wN and wD , but is very noisy
for odd values.

Given the above observations, we want to model P (nST , nTS).
Here, one can think of using well-known parametric distributions
from statistics, such as the bivariate Pareto [17] and the bivariate
log-normal [15] distributions. There are several bivariate Pareto
distributions in the statistics literature. Among these, the simplest
has the joint probability density function(pdf) specified by

fX,Y (x, y) = k(k + 1)(ab)k+1(ax + by + ab)−k−2

for x > 0, y > 0, a > 0, b > 0 and k > 0. However, looking at the
pdfs of these and many more bivariate distributions, we notice that
none of them can be used to model the distributions we observe
here. The reason is that in such distributions, fX,Y (x, y) always
decreases by increasing either of the variables x and y. On the other
hand in our case, when y is fixed, fX,Y (x, y) should be increasing
after x exceeds a certain point. (See Figure 4(right)).

Weight type β α γ RSS
wN 1.3796 0.4924 1.6152 4.6065e-04
wD 2.0507 1.3341 1.7879 0.0015
wee

SMS 1.4 1.4428 0 0.0046
weo

SMS 1.0144 0.5147 0.2251 8.7056e-05
woe

SMS 1.0858 0.3304 0.4700 1.6677e-04
woo

SMS 0.6273 0.3333 0.2093 3.1207e-04

Table 2: LS parameters fit to the 3PL function f(nST , nTS) ∝
n−α

ST n−β
TS(nTS − nST )−γ and Residual Sum of Squares (RSS)

error for weights wN , wD and wSMS .

As we cannot model the observed patterns by well-known bivari-
ate parametric distributions, we propose to formulate these distri-
butions with a what we call Triple Power-Law (3PL) function.

MODEL 1 (TRIPLE POWER-LAW (3PL)). In phone and SMS
networks, the number of mutual edge pairs with weights nST and
nTS (number of phone-calls/SMSs or total duration of phone-calls)
on each reciprocal edge (nST being the smaller of the two) follows
a Triple Power-Law in the form of

P (nST , nTS) = P (nST )P (nTS |nST )

∝ n−α
ST n−β

TS(nTS − nST )−γ .

for α > 0, β > 0, and γ > 0. Here, we integrate our observations
that both nST and nTS are power-law distributed (first and second
terms). We also observed that P (nTS |nST ) obeys a power-law,
by definition starting at nST (nTS ≥ nST )(third term). Second
and third terms also account for the “elbow” shape we observed for
P (nTS |nST ), to which two separate power-laws can be fit.

Finally, to find the fitting parameters to the 3PL model for the
real distributions in MCG and MTG, we used the optimization
toolbox in Matlab where we defined the objective function to be
the Residual Sum of Squares (RSS) to be minimized with con-
straints α > 0, β > 0, and γ > 0. We show the estimated pa-
rameters for all three graphs as well as the RSS errors in Table 2.
Note that we had to estimate parameters for the distribution of all
the cross-product of even and odd weights in the MTG, wee

SMS ,
weo

SMS ,woe
SMS and woo

SMS .
Having estimated the model parameters we generated synthetic

samples with the same number of edge pairs for each graph. We
show the corresponding plots for the synthetic graphs in Figure
5(right) for (from top to bottom) wN , wD and wSMS , respectively.
Also see Figure 6(top) for the contour plots of the distribution of
edges in MTGee, MTGeo,MTGoe and MTGoo. We show the



(a) (wN ) P (nTS |nST = 2) P (nTS |nST = 8) P (nST |nTS = 80) P (nST |nTS = 100)

(b) (wN ) P (nTS |nST = 2) P (nTS |nST = 8) P (nST |nTS = 80) P (nST |nTS = 100)

(c) (wSMS) P (nTS |nST = 1) P (nTS |nST = 2) P (nST |nTS = 80) P (nST |nTS = 100)

Figure 4: (left) Power-law(PL) fits to the distribution of nTS given nST ={2,8} (vertical “slices”) for (a) wN and (b) wD . Notice the
“elbow” shape to which two separate power-laws are fit. (c) Distribution of nTS given nST ={1,2} for wSMS . Even values (green)
are more probable than odd values (blue) with a smaller PL exponent. (right) Distribution of nST given nTS={80,100} (horizontal
“slices”). Notice that P (nST |nTS) decreases slowly up to a point (marked with dashed lines), after which it starts increasing.

Figure 5: (left) nTS versus nST for (from top to bottom) wN , wD , and wSMS . (right) Synthetic data generated after fitting 3PL
parameters to the real data for the same figures. Figures are best viewed in color.



Figure 6: (top) Contour plots for the distribution of edges w.r.t. nTS vs. nST for (from left to right) wee
SMS , woo

SMS ,woe
SMS and weo

SMS .
(bottom) Synthetic data generated after fitting 3PL parameters to the real data for the same figures. Figures are best viewed in color.

synthetic data generated in the bottom row of the same figure. No-
tice that the fit to wSMS is comparatively more noisy. This is be-
cause the number of edge pairs in MTG (∼2M) over which we es-
timated the parameters is much smaller compared to that of MCG
(∼42M) (Table 1).

5.2 Patterns in Node Degree and Strengths
In this section we study the association between the degree of a

node and its strength. The question we want to answer is ‘how does
the strength of a node change with changing degree?’ We show the
scatter plot of strength s versus degree k for all the nodes in MCG
in Figure 9, (a,d) using 2D heatmap, (b,e) contour plots and (c,f) 3D
surface plots for weights sN and sD , respectively. We observe that
the distribution of nodes with respect to their degree and strengths
follow a similar pattern for both types of weights; (a similar pattern
holds also for sSMS but we omit the related plots for brevity).

Given the observed patterns in MCG and MTG, we want to model
P (k, s). In the following, we describe a framework for modeling
and parameter fitting of the observed patterns.

As in the previous section, we start by looking at the strength
distribution of the nodes with a specific degree, that is P (s|k = x),
for x up to 100. We show the distributions for x ={1,5,10,20}
in Figure 7 for (top) sN and (bottom) sD . Here, we observe that
P (s|k) follows a log-normal distribution with mean µ and standard
deviation σ that change with degree k. To further understand how
the µ and σ change with increasing k, we plot the estimated µ and
σ values versus k in Figure 8(b,c) for (top) sN and (bottom) sD ,
respectively. We see that we can fit least-squares curves to model
the changing value of µ and σ as a function of k. We will denote
the value of µ for a specific k as fµ(k) and that of σ as fσ(k). In
Figure 8(a), we see that the distribution of degrees in MCG, that
is P (k), also obeys a log-normal distribution. All in all, we can
model P (k, s) = P (k)P (s|k) with a what we call Cascaded Log-
Normal function.

MODEL 2 (CASCADED LOG-NORMAL (CLN)). In phone and
SMS networks, the number of nodes with degree k and strength s
follows a Cascaded Log-Normal in the form of

P (k, s) = P (k)P (s|k)

∝ LN(k, µk, σk)LN(s− k, fµ(k), fσ(k)) .

where µk and σk denote the mean and the variance of the log-
normal distribution of degrees k (Figures 8(a)) and fµ(k) and fσ(k)
denote the mean and variance of the log-normal distributions of
strengths s given a particular degree k, which changes as a func-
tion of k (Figure 8(b,c)).

Given the above CLN function with corresponding parameters,
we generated synthetic graphs with the same number of nodes for
each graph we studied. We show the related plots for the synthetic
graphs in Figure 9(left) for sN and (right) for sD , next to each
figure. We note that the synthetic distributions could model the real
distributions qualitatively well.

6. CONCLUSIONS
In this paper, we analyzed reciprocity and weights in both phone

(MCG) and SMS (MTG) networks of millions of mobile phone
users in a large city. The three major conclusions of our work are
the following:

1. We found bivariate patterns in (1) the distribution of the weights
on reciprocal edges; and (2) the distribution of the degree and
strengths of nodes in MCG and MTG for all three types of
weights wN , wD and wSMS .

2. We proposed two bivariate functions (1) the 3PL to model
the joint distribution P (k, s) of nodes with degree k and
strength s; and (2) the CLN to model the joint distribution
P (nST , nTS) of reciprocal edge pairs (eST , eTS) with re-
spective weights (nST ,nTS). We further described a param-
eter fitting routine for the proposed functions.

3. We showed that our proposed functions and fitting of param-
eters could model the real distributions in MCG and MTG up
to 2M nodes and 42M mutual edges well.

Additional contributions can be listed as follows:

1. We observed that 2D visualization of skewed bivariate dis-
tributions in real data could be misleading due to high over-
plotting; and

2. We showed the conundrum between the mean and the median
values in the MCG and MTG which give different results and
therefore provide different, even conflicting insights.



(a) sN

(a) sD

Figure 7: Log-normal fits to the distribution of node strengths given degree={1,5,10,20} for (top) sN , and (bottom) sD . Notice that µ
increases, while σ increases and then decreases with increasing k.

(a) degree distribution of nodes in MCG (b) µ vs degree (c) σ vs degree

Figure 8: (a) P (k) ∝ LN(2.46, 1.17). (b) µ and (c) σ of P (s|k) changes with k similarly for (top) sN and (bottom) for sD .
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