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Abstract

Set value attributes are a concise and natural way to
model complex data sets. Modern Object Relational
systems support set value attributes and allow various query
capabilities on them. In this paper we initiate a formal study
of indexing techniques for set value attributes based on
similarity, for suitably defined notions of similarity between
sets. Such techniques are necessary in modern applications
such as recommendations through collaborative filtering and
automated advertising. Our techniques are probabilistic and
approximate in nature. As a design principle we create
structures that make use of well known and widely used
data structuring techniques, as a means to ease integration
with existing infrastructure.

We show how the problem of indexing a collection of
sets based on similarity can be reduced to the problem
of indexing suitably encoded (in a way that preserves
similarity) binary vectors in Hamming space thus, reducing
the problem to one of similarity query processing in
Hamming space. Then, we introduce and analyze two data
structure primitives that we use in cooperation to perform
similarity query processing in a Hamming space. We show
how the resulting indexing technique can be optimized for
properties of interest by formulating constraint optimization
problems based on the space one is willing to devote for
indexing. Finally we present experimental results from a
prototype implementation of our techniques using real life
datasets exploring the accuracy and efficiency of our overall
approach as well as the quality of our solutions to problems
related to the optimization of the indexing scheme.

1 Introduction

Object Relational systems [SM96] allow storage and
query capabilities on complex data types. The products
of many years of research on spatial, multimedia and
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create type user_t (
name varchar(20),
address varchar(100),
zipcode char(5),
country varchar(10),
books_bought
setof(varchar(200)));

create table user of type user_t;

Figure 1: Example Schema

time series data as well as the indexing techniques and
query capabilities defined on them, are finding their
way on most commercial Object Relational engines.
Indexing in Object Relational databases has been
an active area of research for many years. Various
indexing techniques tailored to specific data types
[GGI8] exist, as well as some proposals for unifying
popular indexing schemes [HNP95]. Through relational
extensions (extenders, cartridges, datablades) users can
store and query complex data as well as use novel query
capabilities on them, like for example querying based on
similarity.

Set value attributes are a concise and natural way to
model complex data sets. Modern Object Relational
systems [SM96] support set value attributes and allow
various query capabilities on them. Set value attributes
are part of SQL3, a fact that is likely to make ubiqui-
tous their use in commercial applications. Although the
expressive power of query languages allowing set value
attributes has long been studied in various communi-
ties, little is known or has been reported to date on the
alternate options for storage, indexing and query execu-
tion on set value attributes. New applications emerging
from the wide spread use of the World Wide Web as
front end to database engines, such as collaborative fil-
tering and automated recommendations, create pressing
needs for advanced query processing on sets. Consider
for example the simple schema of Figure 1. It keeps
track of the books each user bought in a set form. For
a specific user u, we would like to identify the users
which bought books most ’similar’ to u, for suitably
defined notions of similarity between sets. This is a
common query for recommendation purposes. Analy-



select name, books_bought
from user
where

Similar(u.books_bought,books_bought) > 0.9

Figure 2: Sample Query

sis of the result set can then take place with specific
algorithms to make recommendations to u for specific
books. Such capability is most desirable in popular e-
commerce sites and online stores. Similar examples can
be formulated for various scenarios of interest. For ex-
ample such functionality is desirable for the analysis of
web site logs based on the IP address of individual con-
nections, for dynamic content generation or dynamic
advertising. Assuming the existence of function Simi-
lar that assesses the similarity of two sets as a fractional
number between 0 and 1 (0 if the sets are disjoint and
1 if they are identical), the query in Figure 2 can be
formulated. The query retrieves all users and the as-
sociated set of books they bought, if they are highly
similar to the set of books bought by u. Now assume
that a set of books on a specific subject go on sale. The
e-tailer might wish to email potentially interested users
for the sale. In this case however, the users which have
already bought a large fraction of the books on sale,
will not be good candidates, since they own most of
the books already. One should request users that have
already bought a small fraction of the books on sale
(say between 40% and 70%), as they might be inter-
ested to obtain more related books on the same topic.
In this case, one should form the query using a range of
smaller similarity values. Support for similarity queries
on sets, enables various forms of sophisticated analysis.
For example one may retrieve and correlate users with
highly dissimilar buying patterns (with similarity say
less than 0.1) to reason about buying behavior based
on other attributes of interest, such as geographical lo-
cation. Taking this example further, if a “profile set” of
books is created for a user class, one may retrieve user
classes with similar or dissimilar profiles and analyze
user classes further, seeking features or rules responsi-
ble for the similar or dissimilar buying behavior.

In their most general form, set similarity queries
specify a range of similarity values of interest. The
user specifies a lower and upper bound of similarity
values of interest and retrieves all sets with similarity
within the range of interest. The ability to retrieve
sets based on similarity, can serve as a primitive for
effective similarity based query processing on sets. It
can serve as a basis for the development of efficient set
mining algorithms such as clustering algorithms for sets,
classification algorithms based on set similarity as well
as join algorithms. For example, treating web pages as
sets of words they contain, a clustering operation based
on set similarity could identify clusters of web pages
which are similar but not copies of each other. Such
an operation can be very useful towards more efficient
(and accurate) implementation of the 'what’s related’
feature of popular web browsers.

In this paper, we initiate a formal study of indexing

schemes capable of supporting similarity queries on sets.
As a design principle, we require that the indexing tech-
niques developed rely on data structures readily avail-
able in modern Object Relational systems, so that inte-
gration with existing infrastructure is not troublesome.
Our overall approach is based on a randomized tech-
nique capable of capturing similarity between two sets,
for suitably defined notion of similarity. We then use
the outcome of this randomized procedure to develop
hash based schemes capable of retrieving sets, similar
to a query set. The resulting indexing scheme 1s ap-
proximate and its accuracy depends on a well known
tradeoff with space. We analyze this tradeoff and in
particular we show how such a hash based scheme can
be optimized both for performance and accuracy given a
constraint on the space used for indexing. Moreover, we
analyze the overall implications of various parameters
in the performance of our technique and we formulate
index construction as an optimization problem, propos-
ing algorithms for its efficient solution.

This paper is organized as follows: In Section
2 we provide definitions necessary for the bulk of
the paper.  Section 3 presents our approach for
preprocessing a set collection. In Section 4 we introduce
hash based data structure primitives that we use
in cooperation to construct an index for similarity
queries on sets. Section 5 presents algorithms that
optimize the resulting indexing scheme for objectives of
interest. Section 6 presents experimental results from a
prototype implementation of our algorithms using real
data sets, analyzing the performance and accuracy of
our indexing scheme. In Section 7 we review work
related to the work presented herein and finally Section
8 concludes the paper pointing to problems of interest
for further study.

2 Definitions

Given a database of sets, the focus of this paper is to
develop efficient algorithms for answering queries of the
form:

“Return the sets in the database that are similar
more than 90% with a query set ¢’

“Return the sets in the database that are similar
between 80% and 90% with a query set ¢’

“Return the sets in the database that are less than
65% similar with a query set ¢’

All of the above query types can be answered by
providing queries based on a range of similarities
as a primitive to the user. Whenever one deals
with similarity queries, one has to define precisely
measures that capture the notion of similarity under
consideration.

Definition 1 (Similarity Measure) Given two sets
A and B the similarity between them is defined as:
_ns)

which always assumes values between 0 and 1.



This measure is known in the literature as the Jaccard
Coefficient of two sets. It expresses the fraction of
elements common to both sets. Notice that this
measure is not a metric . Nevertheless, a distance
function can be defined in terms of the similarity as
d(A, B) = 1 — sim(A, B), and it is easy to show that
such a distance function is indeed a metric.
Formally, the problem we address is as follows:

Definition 2 (Set Similarity Range Query) Given
a collection of N sets 8§ = {S1,54,...,Sn}, preprocess
S so that for any query (q, [o1,03]) return efficiently
all sets s € S such that o1 < sim(s,q) < oq, where q is
a query set and [o1, 03] is the target similarity range.

An obvious attempt to process set similarity queries
is to transform sets to binary vectors forming their
wndicator vectors. In other words, assuming that all
sets contain elements of an a-priori known universe
U ={e1,ea,...,¢i)}, a set S is mapped to the vector
< b1by .. by > where the bit b; is 1 iff the element e;
belongs to the set S. Unfortunately, such a mapping
i1s inappropriate for our purposes. The dimension of
such a vector space is typically huge and even worse, it
1s typical that not all the elements of the universe are
known in advance (e.g. documents represented as sets of
the words they contain). We don’t assume knowledge
of the universe the set elements are derived from, or of
the cardinality of sets in our collection. For the types of
applications we are interested in, such assumptions are
restrictive as the domain of set elements might not be
static or known in advance and the size of sets in our
collection can be arbitrary.

3 Indexing Similar Sets

In this section we present our proposal for indexing
arbitrary sets based on similarity. We will present our
approach in the following steps:

e We will first present an embedding of the set col-
lection & = {S;...Sn} into a space of vectors V of
fixed dimensionality. This embedding is based on
the previously introduced theory of min-wise inde-
pendent permutations [Coh97, BCFM98]. The em-
bedding essentially derives a reduced dimensionality
version of the problem capturing similarity between
sets in S. The embedding is probabilistic but has
no distortion in expectation. In particular the em-
bedding has the property that for any two elements
S;, S; € S their similarity can be assessed by manip-
ulating the coordinates of their corresponding vec-

tors V;, V; in V.

e We introduce an additional embedding of V into
the Hamming space with no distortion. The new
embedding makes use of results from coding theory
to preserve the nice properties of space V.

1Recall that metric is a function m(+, -) which is non-negative,
symmetric, m(z,y) = 0 iff z = y, and satisfies the triangle
inequality

e Finally, we will show how the resulting Hamming
space can be indexed by introducing hash based
schemes which we will optimize for similarity query-
ing.

3.1 Min-wise Independent Permutations

(Embedding S to V)

The first ingredient of our embedding is the Min
Hashing technique which was first introduced by Broder
et. al., [BGMZ9I7] (see also [Coh97]). Tt has been
used to identifying mirror web pages and also for
estimating the selectivity of boolean as well as twig
queries [CKKMO00, CJK*01]. Since our proposal uses
this technique in its first step, we review Min Hashing
here for completeness.

The basic idea of Min Hashing is to implicitly define
a random order on the elements universe using hashing.
Such a random order is viewed as a random permutation
7(-). Let m(-) be chosen at random over the set of
random permutations of the elements universe. For a
set A define min{w(A)} = min{w(z)|z € A}. Then for
two sets A and B:

Pr(min{r(A)} = min{m(B)}) = sim(A, B).

Note that the same permutation is used for both sets
A and B. The permutation can be typically approx-
imated using hashing and the technique can be ap-
plied independent of the type of set elements (numeri-
cal,categorical). The values min{m(A)} are represented
in practice using a number of fixed precision. Min-wise
permutations provide a way to perform the embedding
of § to V. By repeating the Min Hashing process &
times on each set S; of & we can represent it by the
k resulting min-hash values and form a vector V; of V
referred to as the min-hash signature of S;. Given sets
S1 and Ss let V7 and V5 be their min-hash signatures.
If the sets have similarity s (for some 0 < s < 1), the
expected number of min-hash values that the two min-
hash signatures agree would be s-k, and as it was shown
in Cohen et al [Coh97] using Chernoff bounds, that the
number of equal min-hash values between the min-hash
signatures is an unbiased estimator of the expectation
above.

3.2 Embedding into a Hamming Space
(Embedding V to )

Let H be a Hamming space; each element of H is a
binary vector. We use the notation H* to denote that
binary vectors in 4 have dimensionality . We will show
how to embed space V into a Hamming space H of some
fixed dimensionality in a way that preserves the notion
of similarity between vectors in V. We will subsequently
show how to index the resulting Hamming space.

Definition 3 (Hamming Distance) Let hy, hy be vec-
tors in a Hamming space. The Hamming Distance

dgr(h1, h2) is defined as the number of bits in which the

two vectors differ.

Although the notion of Hamming distance is typically
used in the literature, we find more convenient for



the description of our algorithms to work with the
equivalent concept of Hamming Similarity.

Definition 4 (Similarity in Hamming Space) Let
hy, hy be vectors in a Hamming space of dimension £.
The Hamming similarity Sgr(h1, ha) of hy,ha is defined
as the fraction of common bits between the two vectors,

thus SH(hl,hz) =1 W

Essentially we wish to construct an embedding of V to
a Hamming space having the following property:

Objective 1 If vectors V1,Vy € V have sim(Vy,Va2) =
s, then for the corresponding vectors hi,hs in the
Hamming space, Sp(hy, ha) = s

It is easy to see that a straightforward mapping into
a Hamming space does not meet out objective. Let
V = (v1,...v5) € V. Each of the v; min-hash values is
an integer of b bits. A straightforward embedding of v
into Hamming space is feasible by transforming v into
a binary vector:

u(V) = binary(vy )binary(vs) ... binary(vg) (1)

where binary(v;) is the binary representation of the
integer v;. This is essentially an embedding of vectors
in V into a Hamming space H°*. Consider two vectors
V1,V of V with similarity s. Under mapping u(.) they
agree in b - s - k bits. Nothing however can be said
about the remaining b - (1 —s) - k£ bits obtained from the
remaining (1 —s) - k£ min-hash values that vectors V1, V5
do not agree upon.

Example 1 Consider Vi = (7,3,5,1),V> = (3,3,5,3).
Then sim(Vi,Vy) = 0.5. Also u(Vy) = 111011101001
and u(Va) = 011011101011. However, the fraction of
bits common between u(Vy), u(Va) is 0.83 [ |

We construct our embedding using error correcting
codes (ECC). The theory of error correcting codes is
very rich and the reader is referred to [MS93] for a
thorough exposure. Here we state the results that we
essentially need for constructing our embedding. ECC
are functions that map an b-bit string v to a binary
codeword C'(v) of length m (the length of the code), for

some m larger than n.

Definition 5 (Distance of an ECC) The distance of
an ECC is d if any two codewords C(u1),C(uz) differ

mn at least d places.

Assume the existence of a code, with the property
that each pair of distinct b-bit strings u, v is mapped
to codewords C'(u) and C(v) of length m bits, such
that the distance between C(u) and C(v) is exactly 3.
Let ece(.) be a code with this property and ecc(v;) the
binary representation of a codeword corresponding to
the binary representation of some min-hash value wv;.
We complete out embedding by applying the following
transformation to each V € V

h(V) = ecc(vr)ece(vs) . .. ece(vg) (2)

V i1s embedded in this way into the Hamming space
H™F . For this space, we state the following theorem:

Theorem 1 Let V € V and ecc(.) a code with the
property that each pair of distinct codewords of length
m s at distance exactly 5. Then, the mapping h(V) =
ecc(vy)ece(va) ... ecc(vg) is an embedding of the space
V into a D = (mk)-dimensional Hamming space with
the following property: for any two wvectors Vi and
Va with similarity sim(Vy,Vs) = s, the Hamming
distance of the corresponding vectors h(Vy) and h(V2)
is dg(h(V1), h(V2)) = D — (s + 155)D = 155 D.

2 2

It remains to show, how one can construct code ece(.).
A code with the property of ecc(.) can be constructed
easily by using simplex codes [MS93]. Their generation
involves a simple matrix multiplication with a standard
matrix. Such codes are fairly standard and further
details are available elsewhere [MS93]

3.3 Range Similarity Queries in H™*
Our approach for performing similarity range queries in
H™F is as follows:

Preprocessing: Initially transform all sets in S by
embedding the space to V and then into #™*. Then
preprocess the binary vectors in H™* by building
indices such that similarity queries (in the Hamming
space) can be answered efficiently.

Query Processing: Given a query set ¢ and
a target similarity range [o1, 0], first transform
the set ¢ into a D-dimensional binary vector g
applying the same transformations used in the
preprocessing phase. Then, using the indices built
in the preprocessing phase find all vectors in H™*
that have distance d with the vector query ¢, where
dy = 522D < d < dy = 1522 D, and return the sets
that correspond to these vectors.

Every similarity query (q,[c1,02]) on S can now
be transformed into a similarity query in H™* using
Theorem 1. Thus, we are faced with the following
problem:

Problem 1 (Indexing Space H™*) Given a collec-
tion of N binary vectors in H™* preprocess all vectors
so as for any query (qv, [d1,ds]) return efficiently all
vectors p € H™ such that dy < dy(p,qs) < da, where
di(p, qv) is the Hamming distance between p and q,. As
before, qp is the embedded (into Hamming space) query
vector and [d1,ds] is the target distance range in Ham-
ming space.

Thus our problem has been reduced to the problem
of performing range queries in a Hamming space of
potentially very large dimensionality. In the next
section we describe our approach for constructing hash
based indexing structures capable of processing such
queries in Hamming space. Our overall approach for
executing such queries is not exact but approximate.

4 Filter Indices

We first present two hash based data structures that
our algorithm uses as primitives to efficiently execute



range queries into Hamming space. We choose to use
Hammingsimilarity in what follows for convenience; the
description of the data structures can be restated easily
using Hamming distance making use of definition 4. We
also assume that each element of A is augmented with
a set identifier (sid), denoting the identifier of the set
in space § the binary vector corresponds to.

The first data structure primitive we present, Similar-
ity Filter Indez SFI(s*) is a hash based index structure
that identifies with very high probability, given a Ham-
ming similarity threshold s* and a binary query vector
s, the set identifiers of all vectors in H™* that have
Hamming similarity at least s* with q;. The second,
Dissimilarity Filter Index DF I(s*), identifies with very
high probability the set identifiers of all vectors in H™*
that have Hamming similarity at most s* with ¢,. We
will subsequently use these structures in cooperation to
construct our indexing scheme.

4.1 Similarity Filter Index

In this section we show how the Similarity Filter Index,
with parameter s* can be constructed, which essentially
operates as a probabilistic filter on H™* to locate with
very high probability vectors similar more than s* with
a query vector ¢,. For each vector h € H™* we select
r out of D bits selecting the bit positions at random,
generating a reduced dimensionality representation of
h, denoting it as h'. Let H the space resulting after
applying this sampling step to each element of H™F.
We assume that space # consists of tuples (h’,sid),
where sid 1s the set identifier of the corresponding set
in§.

An observation is that if two elements of #™* have
high Hamming similarity then with high probability
the corresponding elements in H' will be equal. If we
hash the sid’s based on the value of k', with very high
probability sids corresponding to similar sets will hash
in the same bucket. To amplify the probability that
similar vectors will have equal h' values, we repeat the
process [ times. Assuming that two vectors v, u have
Hamming similarity Sg(v,u) = s the probability that
u and v will have the same k' values at least once (out
the [ repetitions) is:

Prlv and u have equal h' values at least once] =  (3)
1—(1-5")" (4

Notice that this probability depends only on the
parameters 7, [ and the Hamming similarity s of the
vectors v and wu, and not on the vectors themselves.
Let this probability be p,;(s). One can observe that
for fixed values of r and [, p,;(s) is an ’S’-shaped
function for 0 < s < 1, that approximates the wun:t
step function at some turning point s. What it means
is that the probability that two k' values are equal,
and thus the probability that the two corresponding
sid’s will hash in the same bucket is close to 1, if the
vectors have Hamming similarity greater than s, while
it is close to 0 if the vectors have Hamming similarity
smaller than s. Function p,;(s) acts as a probabilistic

filter function.  For any s* € [0,1] we can pick the
parameters r and /, so that p,;(s) has s* as the turning
point. This can be done by setting p,;(s*) = 1/2. This
gives one equation and two unknowns, r and [. All
pairs of the parameters r and [ that satisfy the equation
define the family of filter functions p, ;(s) that have s* as
turning point. The relationship between r and [ in this
equation is “monotonic”,i.e. as ! increases r should also
increase and as a result p,;(s) becomes steeper. This
property introduces a tradeoff between the accuracy of
the probabilistic filter function p,;(s) and the value of
. This tradeoff is explored in section 5.

Our approach for constructing SFI(s*) consists of
first choosing the value of r given a specific value of
l; then we repeat the following process ! times: We
sample r bits from each element of H™* creating H
We then hash each element of #' creating a hash
table. Let sid.oun: be the number of sid’s that can
be accommodated in a bucket. Choosing O(sidi\rm)
hash buckets is sufficient to guarantee that no bucket
overflows occur during this hashing process. Thus, at
the end of the [ repetitions we have created [ hash tables.
To retrieve all the set identifiers which are more than
s* similar to a query vector g, € H™*, we repeat the
following process [ times: At the i-th repetition we
sample randomly 7 bits from ¢; and determine bucket j
that the resulting value hashes, in the i-th hash table.
Let B;» be that bucket. The set of sid’s that form the
query answer is SimVector(s™, ) = Ui’:l B; The
entire process is illustrated in Figure 3(a). Structure
SFI(s*) requires O(N) space and answers a query with
O(!l) bucket accesses.

The ideal filter function would be a unit step function
positioned at a similarity value s*. For such a function
the sids of two vectors which are more than s* similar
would hash in the same bucket with probability 1.
Function p,;(s*) is not a unit step function and it incurs
a certain number of false positives and false negatives.
For a specific set collection S, let Dgs(s) be its similarity
distribution function, that is a function that for every
value of 5,0 < s < 1 expresses the number of sets
which are s similar. Assuming that all queries are
equally likely, the expected number of false positives
for a random query is:

Definition 6 The expected number of false positives
incurred by function p,;(s*) is:

Bpa(s7) = D(s) - pru(s) - ds (5)

s<s*

This number quantifies the expected number of set 1den-
tifiers that are erroneously identified having similarity
above s* with a random query, and is shown graphically
in figure 3(b). Similarly:

Definition 7 The ezxpected number of false negatives
incurred by function p,;(s*) is:
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This number quantifies the expected number of set
identifiers that are not identified as having similarity
above s* with a random query and is shown graphically
in figure 3(b). Both quantities degrade the quality of
pri(s) as a probabilistic filter and should be minimized.

A first attempt to use structure SF(s) as a primitive
to design an indexing scheme is the following. Split
the entire similarity range [0, 1] into £ + 1 intervals, by
selecting k points 0 = £y <1 < ... < tp < tpy1 = 1.
For each of these k points we create instances of the data
structure SFI(t1),...,SFI(ty). Now given a query (gs,
[01,02]) we find the approprlate points lo = t;, up = t;
that minimally enclose the range [o1, 03], and return
the set (SimVector(lo,qp) \ SimVector(up, qp)) as the
answer to the query (gp, [01,03]). (Here by A\ B we
denote the set difference operation.)

The problem with this proposal is that it becomes
very inefficient for small values in the similarity range
[0,1]. To see that, notice that the algorithm performs a
difference operation between two sets A and B, where
the second set is always a subset of the first. In such
a case the overhead of the operation is the size of the
set B, because it contains elements that we have to
remove from the final answer. In contrast, the elements
that belong in A and not in B are all the elements of
the difference and we should report in the final answer.
Translating this intuition in our setup, given a query
range [0'1,0'2] the overhead of the difference operation
is the size of the set Sszector(up qs). Obviously this
becomes large as the value of s; is far away from 1.
In those cases the algorithm will have very large and
unnecessary overhead.

In the next section we show how to overcome this
problem by creating data structures that return all
vectors that are dissimilar to a query vector gp.

4.2 Dissimilarity Filter Index

The key observation that permits to avoid the overhead
of the set difference operation, is to notice that for a
query range [0, 03], the condition that o4 is far away
from 1 forces oy to be close to 0. Thus, in such cases, it
1s better to subtract the vectors that have similarity less
than oy from the vectors that have similarity less than
05. In turn, this means that we should provide a way

to answer queries regarding dissimilar vectors. More
specifically, given a query vector ¢, one should be able
to identify the sid’s of all vectors h € H™* such that
s (h, qp) < s. The next theorem provides the basis for
doing so:

Theorem 2 If we reverse all bits of a query vector qp,
forming vector ¢, then for every vector h € H™F,

Su(h,q) > 1—s iff Su(h,qp) < s (7)

that 1s, if a vector is at most s-similar with the query
vector qp, it is at least (1-s)-similar with vector gp.
This implies that we can solve the problem of finding
dissimilar vectors by constructing again a probabilistic
filter function. In particular, to build a data structure
that retrieves with high probability all sid’s at most
s*-similar to a query g¢p, we build a data structure
capable of retrieving all sid’s at least 1 — s*-similar to
q. This is structure SFI(1 — s*). Then we reverse
(complement) ¢, constructing ¢, and we use the data
structure SFI(1—s*) to find all (1 —s*)-similar sid’s to
gy. According to theorem 2, these are the set identifiers
that are at most s-similar to ¢5. To distinguish this
data structure from SFI(1 — s*), since we are querying
based on the complement of a query ¢, we refer to it
as DFI(s*) and to the result retrieved from DFI as
DissimV ector(s*, qp).

4.3 Building The Index

Now we are ready to describe the details of our indexing
technique.

Preprocessing Partition the Hamming similarity
range [0,1] into k& + 1 intervals, by selecting k
pomtsO—ro<r1<...<rm_t < ... <
ty < tgy1 = 1 and build k£ + 1 data structures
DFI(r1),...,DFI(rm), SFI(tm),...,SFI(tg). The
k+1 points are kept ordered in an in memory data
structure.

Query Processing Given a query (q,[o1,02])
derive g from ¢ applying the embeddings of section
3. Then use the in memory data structure to



determine points lo, up that minimally enclose the
range [0, 03]. The answer to the query depends on
the following cases for the points lo and up.

— Iflo = r; and up = r; let A = (DissimV ector(up, qs)

\ DissimVector(lo,qp))

— Iflo=1t; and up = t; let A= (SimVector(lo, ¢)
\ SimVector(up, q))

— Iflo = r; and up = t; let A = ((DissimV ector(rm, ¢s)

\ DissimV ector(lo, qp)) U (SimVector(tm, qp) \
SimVector(up, q»)))

— In the special cases of lo = 0 and up = 1 the
set DissimV ector(lo, qp) and SimVector(up, qp))
are empty, so we don’t have to perform the
corresponding queries.

— Let set(z) denote the set corresponding to a sid in
A. Return {set(z),z € Alo; < sim(set(z),q) <
g2

Since answer A contains sids corresponding to false
positives, they have to be excluded from the final answer
returned to the user. Consequently one has to retrieve
all sets from & with sids in A, evaluate their similarity
with the query set and return only those with similarity
within the requested similarity range.

The proposed indexing scheme readily supports dy-
namic operations on the set collection (insertions, dele-
tions), since the data structure primitives it uses,
namely hash indices, are fully dynamic. To complete
the description of the structure, we should specify the
choice of various parameters associated with it. Since
filter functions are probabilistic and incur error in terms
of false positives and false negatives one primary ob-
Jective is to maximize the overall accuracy and perfor-
mance of the indexing scheme. Moreover the exact lo-
cation of the k + 1 points has to be decided as well
as the allocation of DFI and SFI structures to those
points. In addition the parameters of each DFI and
SF1I structure have to be determined. In the following
section we formulate and solve optimization problems
related to the choice of those parameters.

5 Index Optimization

In this section we present our technique for building the
index. The proposed indexing scheme is approximate
since each probabilistic filter function entails a certain
number of false positives and false negatives, quantified
in expectation by equations 5,6. A specific query @ =
(q,[o1,02]) has an exact answer a(q) in §. These are
the sets in S that are between oy and oy similar to
q. Evaluating ) using the proposed indexing scheme
will yield an answer ia(q), where ia(q) C a(g). Let
SFI(lo) and SFI(up) be the FIs that minimally enclose
the similarity range [o1,032] (lo < up). The error in
the answer (a(q) \ ia(q)) is due to false negatives that
are induced by SFI(lo), and to false positives that are
induced from SF(up):

ia(q) = a(q) \ P(up) \ N(lo) (8)

The index will also bring in memory an additional
number of sets, since [o1, 3] is not perfectly aligned
with partition end points; specifically

ie(q) = SimVector(lo, q») \ SimVector(up, qs) \ ta(q)
(9)
These sets are between [lo, up] similar to q.

We use the notions of precision and recall widely
used in Information Retrieval [vR79] to quantify the
performance of the indexing scheme. Intuitively,
recall quantifies how accurate our index is (a recall
close to 1 is desirable), and precision quantifies how
efficient our index is (a precision close to 1 is desirable).
Unfortunately, as we will see, it is difficult to optimize
for both at the same time. Increasing one is likely to
decrease the other. For example, the simple brute force
algorithm has recall equal to 1, but the precision is the
lowest for every query because all sets are retrieved.

A probabilistic filter function allows to quantify
the number of false positives and false negatives
incurred by a query only in expectation (Equations
5,6). Thus our efforts for optimization of our indexing
scheme are centered towards optimizing the ezpected
precision and the expected recall over the workload of
all possible queries, which we assume to be uniformly
distributed, both in terms of set queries and similarity
values?. Let E;q(01,02) = Averageqes (lia(q, [o1, 02])])
and E,(01,09) = Averageges (la(g, [o1,02])|) Thus,
Fiq(01,02) is the expected number of similar sets
retrieved using the index, over all queries in the
similarity range [o1, 03], and E4(01, 02) is the expected
size of the answer over all queries in the same range.
Then we define expected recall of a similarity range
[o1,09] as:

Definition 8 (Expected Recall) We define the ez-
pected recall of the similarity range o1, 09] as:

Eia(01,09)

Eq4(o1,032) (10)

ExpectedRecall(oq,09) =

and the expected precision as:

Definition 9 (Expected Precision) The expected pre-
cision of the similarity range [o1, 03] is:

Eia(q) (0’1, 0-2)
Eiq(o1,02) + Eie(01, 09)
(11)

ExpectedPrecision(o1,03) =

We will be optimizing the ezpected worst case of recall
(or precision) over all similarity intervals using our
indexing scheme 3.

Evaluating equations 5,6 requires knowledge of the

similarity distribution function Dg of the underlying

2In the sequel we use the terms precision (recall) and expected
precision (expected recall) interchangeably

3We choose to relax the definitions of expected recall and
expected precision using formulas 10 and 11 as opposed to the
average over all queries Q of Recall(Q) and Precision(Q) to make
subsequent optimizations tractable



set collection §. From the definition of Dg, and when
q 1s drawn from &, we have

> a(si,s0) =2 / Ds(s) ds = (12)
qes s1<s<s2
2
Ea(s1,82) = — Ds(s) ds (13)
|S| s1<s<s2

since in the integral of Ds we count each pair of sets
once but in the sum of answers each pair is counted
twice. Dg can be computed exactly in a preprocessing
step, by computing all pairwise similarities between sets
in §. The following lemma provides an efficient way to
approximate it:

Lemma 1 Given a collection 8§ of sets of size n, and
a sample bound b, we can compute a random sample of

the m pairwise similarities between sets in S of
size b in one dataset pass.

As corollary of this lemma, we can efficiently approx-
imate the similarity distribution function Dg by sam-
pling. Knowledge of this distribution is crucial in quan-
tifying our expectation of false positives and false neg-
atives.

The main parameter in our indexing scheme is the
total amount of space that can be allocated to the index
structure. Effectively this is translated to a specified
number K of hash tables we can use, since each hash
table requires the same space for storage, irrespective
of the Filter Index (FI) it is assigned to. A problem
of interest therefore is the allocation of a fixed number
of hash tables to a number of Filter Indices so that
the recall and the precision is maximized. For this
problem to be fully specified, the number of Fls that
we will use, their location on the similarity range [0, 1]
(and thus the number of similarity intervals), their kind
(SFI,DFI) and the number of hash tables assigned
to each FI, should be decided. We present a number
of lemmas showing the influence of these parameters
on the expected worst case of recall and precision.
Based on these lemmas we then formulate and solve the
design of the overall index as an optimization problem.
The choose to present proof intuition for the lemmas,
highlighting the main idea behind the proof. We defer
detailed proofs for the full version of this paper.

5.1 Optimizing Recall

The first observation is that the number of false
positives and false negatives incurred by the FIs has
a large effect on recall.

Lemma 2 Given b hash tables, and K Filter Indices,
the expected worst case recall for a given query set q s
mazimized when the error incurred at each Filter Index
1s approrimately the same.

Using Lemma 2 we can show that the expected worst
case recall increases when we reduce the number of Fls
while the number of hash tables remains constant.

Lemma 3 Given b hash tables, the expected worst
case recall increases when the number of Filter Indices
decreases.

This result is intuitive. If there are fewer false positives
or negatives, the answer we find is more accurate. If
we take this to the limit we arrive to the brute force
algorithm: consider all sets in order to find the ones in
the query answer.

5.2 Optimizing Precision

When optimizing for precision, the location of Filter In-
dices is important. If two consecutive FIs SFI(lo) and
SFI(up) are too far apart, a narrow query (gs, [01, 02])
where lo < 01 < 03 < up and (up — lo) >> (o2 — 01)
would retrieve all sets in SimVector(SFI(lo),qs) \
SimVector(SFI(up),qs), even though the actual an-
swer a(q, [o1, o3]) would be very small.

Our approach for deciding the location of Filter
Indices 1s based on an equidepth decomposition of the
similarity range [0, 1]. Using the similarity distribution
function one can partition the [0,1] similarity range into
intervals that contain approximately the same number
of sets.

Definition 10 (Equidepth Decomposition) Given a
collection of sets S, and a number k, a k-wise equidepth
decomposition of the similarity range [0, 1] is a decompo-
sition of the range into k intervals 0 = cq, cq, . .
cr such that for0 <1< k—1,

'ack—lalz

1
/ Ds(s)ds = z / Ds(s) ds (14)
c;<s<eiq1 0<s<1

Since fogsglps(s) ds = w, it follows that
f. coce - Ds(s) ds = % It is important to

notice the semantics of this equidepth decomposition.
It is possible that for a given query set ¢ some of
the intervals contain more similar sets to ¢ in the
dataset than other intervals. However, for all intervals
[ci,cit1], the ezpected number of sets E,(ci,ciy1) =
%fclsssclﬂ Ds(s) ds = lSlT_l is the same for
all intervals. In other words if we take the average
of similar sets over all query sets ¢ and a given
interval, this average is the same for all intervals,
assuming that queries ¢ are equi-probable.  Such
a k-wise decomposition can be computed using Dg,
constructing the cumulative distribution from it and
determining k quantiles. The following lemma shows
that equidepth decomposition optimizes the expected
worst case precision.

Lemma 4 Given K Filter Indices, the expected worst
case precision for queries with expected answer size at
least a 1s optimized when the Filter Indices are arranged
in equidepth fashion.

The effect of the number of intervals on expected
precision is shown by the following lemma.



Lemma 5 Giwen K Fls, decomposing the similarity
range [0, 1] into m + 1 ranges, increases the worst case
expected precision for queries with expected answer of
at least a, over decomposing the similarity range into m
ranges, if m < % where T 1s the expected worst case
recall.

5.3 Placing Similarity and Dissimilarity
Filter Indices
Using both Similar and Dissimilar Filter Indices allows
minimization of the amount of work one has to do in
memory. Each range similarity query (g, [o1,03]) in-
volves a set difference operation between SimVector(lo, g)
and SimV ector(up, qp) or between DissimV ector(lo, qp)
and DissimVector(up, ¢5). We wish to minimize the
expected size of SimVector(.) and DissimV ector(.).
To decide the kind of each filter index we adopt the fol-
lowing strategy. We partition the similarity range [0, 1]
into [0, 6] and [4, 1] so that

/OssgDS(S) ds:/éssgi)s(g) ds (15)

If we use SFIs for similarities over § and DFIs otherwise,
we have a bound of [;_ _ Ds(s) ds on how large a

SimVector(.) or a DissimV ector(.) can be. For the FI
closest to §, we place both an SFI and a DFI. In the
next section we show how to specify the number and
the locations of the Filter Indices.

5.4 Index Construction Algorithm

We are now ready to present our approach for designing
the overall index. Lemmas 3 and 5 provide a strategy for
optimization. We formulate the following optimization
objective:

Objective 2 Given a threshold T' on the expected worst
case recall, construct an index that optimizes precision
(and thus performance) while the expected worst case
recall remains above T'.

We give an optimization algorithm that determines
the maximum number of intervals that can be used,
while the expected worst case recall remains at least
T. The input to the algorithm is a collection of sets
S, a bound b on the number of hash-tables that can be
used, and the threshold T on expected worst case recall.
Based on exact knowledge of the similarity distribution
function Dg (or an approximation thereof using lemma
1) we determine (using equation 15) range [0,d] where
DFIs will be placed (SFIs are added in [4,1]). The
next step, is designing the locations of the FIs. We
start by decomposing the similarity range [0, 1] into one
interval, and increase the number of intervals by one at
each iteration, choosing the location of the FIs using an
equidepth decomposition of Dg. Lemma 4 shows that
this decomposition optimizes the expected worst case
recall. The algorithm distributes the number of hash-
tables to the Fls using the Greedy Algorithm that is
described below. To compute the expected worst case
recall we use lemma 2, and compute the expected recall
of similarity ranges of width ¢ around the FIs.

Index Construction
Input: Dataset S, size bound b, recall threshold T
set 1 = 1; recall= 1;

Determine Dg either exactly or approximately
using lemma 1.

compute the value of §; Every FI place in [0, 4]
is a DFI; FIs in [, 1] are SFIs; We
place both an SFI and a DFI, closest to §.

while (recall> T and i < %) {

increment ;

place 7 FIs in equidepth fashion
allocate b hash tables using Greedy()
compute the expected worst case recall

if recall< T', return 7 — 1

}

Figure 4: Index Construction Algorithm

Lemma 3 shows that expected worst case recall de-
creases when the number of partitions increases, and
so the algorithm terminates if the expected worst case
recall that we calculate drops below the threshold.
Lemma 5 shows that the expected worst case preci-
sion improves as long as the number of partitions is be-
low %, so the algorithm terminates when this value
is reached. So the index that we construct optimizes
expected worst case precision (and thus performance)
while keeping expected worst case recall (and thus ac-
curacy) above a user defined threshold. The algorithm
is shown in Figure 4.

The Index construction algorithm invokes algorithm
Greedy (shown in Figure 5) to assign hash tables to
each Filter Index. The following lemmas show that the
Greedy algorithm optimizes expected worst case recall.

Lemma 6 Given K Filter Indices, the Greedy algo-
rithm of figure 5 determines the allocation of b hash
tables that maximizes the expected worst case recall.

6 Experimental Results

We have implemented the proposed set indexing tech-
nique and in this section we report on its performance.
Our goal is to examine the performance of the scheme
varying parameters of interest and to evaluate its accu-
racy. We use real data sets in our evaluation. The data
sets are http logs obtained from web sites, which we
parse and record for each unique IP address the collec-
tion of http log strings associated with that address. We
used two such data sets, one obtained from the winter
Olympics web site at Nagano Japan and the other ob-
tained from the central web site of a large corporation.



The Greedy Algorithm
1. Fori =1 to b:

Find the FI that reduces the expected number of false positives and false negatives the most by
adding a new hash table, and assign hash table 7 to this FI.

Figure 5: Greedy Allocation of hash tables to Filter Indices

Parsing the first log we generated a data set, consisting
of 200,000 sets, of size approximately 400MB, which we
refer to in the experiments that follow as Set!. Parsing
the second data set we created a data set of 200,000 sets
of size approximately 500MB which we refer to as Set2.
Due to space limitations we present only a part of our
results for Setl.

Query answering using the proposed indexing tech-
nique is a two step process. First the set of candidate
set 1dentifiers is fetched from disk for a given query,
and then the corresponding sets are retrieved from disk,
using a conventional data structure such as a B-tree
supporting queries on set identifier. The sets retrieved
have to be checked against the query set to eliminate
false positives. We applied the techniques of section
3 to preprocess the data sets. The parameters of the
indexing scheme are determined by the solution of the
optimization problem of section 5. The input to this op-
timization is the constraint of space the user is willing
to allocate for indexing and the threshold for recall one
wishes to satisfy. We thus conducted experiments to
assess the efficiency of our solution to the optimization
problem of section 5 in terms of meeting the optimiza-
tion objectives, namely meeting the recall goals. Thus
the first set of experiments reports on the precision and
the recall of the indexing scheme for both data sets used,
as a function of the optimization constraint, namely
disk space allocated for indexing. Moreover we evalu-
ated the overall response time of our indexing scheme
including both the time to retrieve the candidate set
identifier list as well as the time to filter out possible
false positives. The second set of experiments evaluates
the overall response time of indexing compared with
the default scheme of sequential scan. Sequential scan,
simply scans the entire set collection and evaluates the
similarity between the query set and the sets in the
database, reporting only those sets with similarity in-
side the target similarity range. In our system this

ran

ratio is estimated approximately as rro = Seq N 8,

where ran is the time to perform a random IO for a
page and seq the time to perform a sequential 1O for a
page (a random disk accesses is approximately 8 times
more expensive than a sequential disk access). Let the
average set size be a pages. One expects that for a set
collection of | S| sets, our indexing scheme provides per-
formance benefits, when the query result size |@Q] is less

than Sl(seqa)
(ran+seg-a) "’
becomes larger in size) the bound for the query result

size becomes larger. For our data sets this estimation

When a increases (the set collection

translates to a result size of approximately 47,000 sets
or 23% of the total number of sets in the dataset. This
percentage will increase as the average size of sets in
our collection increases. This estimation is rough and
ignores the additional processor overhead of sequential
scan, since for all sets in § one has to evaluate the sim-
ilarity with a query set.

Based on this observation we report performance
results as a function of the query result size. We ask
random queries obtained from the set collection and
we classify them according to the size of candidate set
identifiers returned from the index. We form 5 buckets,
one for queries with candidate result size less than 0.5%
of the total number of sets in our collection, between
0.5% and 5%, between 5% and 10%), between 10% and
25% and finally one for queries with candidate result
size between 25% and 35% of the total number of sets
in our collection. For each of these buckets, we collect
results for one thousand queries and report response
time as well as recall and precision averaged over all
queries. The query sets are chosen at random from the
set collection and the bounds for each similarity range
associated with a query are chosen at random as well.

Figure 6(a)(b) shows the precision and recall bars
per bucket for both data sets. Figure 6(a) shows the
graphs for a 500 total index budget and Figure 6(b)
for a total index budget of 1000. Using 500 hash
tables we optimize the index for 90% average recall
for setl and for 90% average recall for set2. In both
cases the optimization objective is achieved. In the
figures, precision, appears to decrease as the result
size increases. To explain this behavior, one has to
consult the similarity distribution function of the data
sets. This function drops sharply as similarity increases.
Consequently large query result sets are produced for
queries involving small similarity values (closer to zero
similarity). In addition small result sizes are produced
by queries involving larger similarity values (close to
similarity one). As a result, when the threshold for
average recall is met by the optimization, the area below
the corresponding filter functions involved, is larger for
queries with large result sizes than the area below filter
functions involved for queries with small result sizes.
When we increase the number of hash tables available
(Figure 6(b)) we optimize for 90% recall in both data
sets. The optimization objectives are met in both cases.
Precision consistently increases, since the number of
similarity ranges allocated by the algorithm increases
in both cases, due to higher availability of hash tables
to be allocated. Moreover, precision drops in both cases
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as result size increases, for reasons similar to the case
of 500 hash table budget.

Figures 7(a)(b) present the overall response time
(averaged over 1000 queries per result size bucket). We
present the total time in seconds required by sequential
scan (labeled Scan in the figures) as well as the time
required by the proposed indexing scheme to report the
query results. The time is reported separately for 10
and processor. These graphs correspond to the case
when total space available is 1000 hash tables, using
100 min-hash values. The graphs are very similar for
the case of 500 hash tables (slightly lower response time
for indexing). We observe that for all queries with result
size (in terms of number of sets) less than 25% of the
total number of sets in our collection, the proposed
indexing scheme offers performance benefits. This is
consistent with our analytical expectation. The total
time to report the result of a query increases with the
result size, since more random IOs have to be performed
to retrieve the candidate sets and subsequently remove
them from the actual result reported to the user.

7 Related Work

Similarity queries have been studied in time series
databases and have attracted lots of research interest
[AFS93, ALSS95, FRM94]. The unordered nature of
sets and the freedom to represent categorical attributes
in sets makes the techniques developed for the time
series domain inapplicable. Manber [Udi94] considered
the problem of retrieving similar files.

Indyk et al., [IM98] introduced Locality Sensitive
Hashing for Ly, Ls and hamming space, and applied
it to nearest neighbor search in high dimensional data
sets using the L; metric [AGM99] and subsequently to
identifying interesting associations between large item
sets encoded using their indicator vectors [CDF*00].
Locality Sensitive Hashing uses a probabilistic filter
function to preserve L; distance between vectors in an
approximate way. Indyk [Ind00], showed a reduction
from the furthest neighbor problem to the nearest

neighbor problem, using a method similar to our
Dissimilarity Filter Index.

Signature based techniques [Fal85] have been applied
to the problem of retrieving subsets of a given set in
a large collection of sets [YIO93]. Such techniques
are based on an encoding via hashing of sets which is
subsequently maintained as a file and scanned in its
entirety to answer a query. No indexing mechanism
is provided. Such techniques however cannot provide
any form of guarantee on their accuracy and analysis is
based on restrictive assumptions such as uniformity.

8 Conclusion

In this paper, we considered the problem of indexing
sets based on similarity. We have proposed indexing
techniques based on hashing that can answer similarity
queries on sets in an approximate way. We did so by
introducing various embeddings during preprocessing of
a set collection. Then we described two data structure
primitives, Similarity Filter Index and Dissimilarity
Filter Index, and used multiple instances of them to
construct our index. We also showed how it is possible
to optimize the resulting index for accuracy and we
presented an experimental evaluation of our approach
showing large performance benefits while achieving
acceptable accuracy.
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