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1. INTRODUCTION

�1.1 Problem:
– given monthly sums of sales
– find daily sales
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1.2 Motivation - Applications

�Qopt - selectivities

�data warehousing

� transaction recording systems (details: in

tertiary store)

� statistical/scientific db

�data integration (partial info from many

sources)
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2. SURVEY

�Qopt - selectivity estimation
– uniformity assumption [Selinger et al, 79]

– ... shown pessimistic [Christodoulakis 84]
– histograms [Muralikrishna DeWitt 88],

[Ioannidis et al 95, 96]

– query feedbacks [Chen Roussopoulos 94]
– spatial databases [Theodoridis Sellis 96]

�Statistical databases [Malvestuto 93], [Ng

Ravishankar 93]
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�3.1 Problem formulation

3. PROPOSED METHOD

→
x = [x i], i = 1, ..., N

Ck (
→
x ) = 0 (k = 1, ..., n)

Estimate the vector

Under the constraints
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observations:

�Under-specified -> infinite # of solutions

� constraints: can be arbitrary

� trivial generalization for n-dim:

count11 count12 count13 count14

count21 count22 count23 count24

count31 count32 count33 count34

count41 count42 count43 count44
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special case

�1-d - no overlap - no gaps (eg., monthly

sums)

�Obvious solution: uniformity

�BUT
– ignores continuity

– overlapping sums?
– impossible for missing values
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3.2 Solution

(Linear) Regularization
– Intuition: choose some solution, e.g., the

smoothest:
– minimize a smoothness function F()

– under the given constraints

icBk

F(
→
x ) = Σ

i=1

N−1

(xi −xi+1)
2

C k(
→
x ) =Sk − Σ xi =0
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Observations

�problem is now well defined!

�any functional F() can be used

�Lemma: Entropy for F() -> uniformity

assumption
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Lin-Reg

�=Phillips-Tomey = Tikhonov-Miller = ...

�Lagrange multipliers -> matrix inversion

� in linear time!

�Theory of ``Inverse Problems''
– image restoration

– tomography etc
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Theorem:

�Given partial sums of a band-limited signal

with small enough batch-size: Perfect

reconstruction!

� In practice, Lin-Reg => almost perfect

reconstruction for ``smooth'' signals
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4. EXPERIMENTS

� synthetic datasets (GAUSS, SINE)

� real ones (IBM, LYNX)

Experiments, to see

- accuracy of reconstruction

- effect of batch-size
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4.1. Accuracy
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Synthetic - sinusoid

sinusoid
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  almost band-limited ->

  almost perfect reconstruction!
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Real datasets
IBM
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- LYNX: ~ periodic (9-10 years)
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4.2 Effect of batch-size

Gauss
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Performance for synthetic datasets:

up to 89% savings
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Real datasets

IBM
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5. EXTENSIONS

�5.1 Merging histograms

40-50    3,000      ?? ?? ??

30-40 5,000 ?? ?? ??

20-30 2,000 ?? ?? ??
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Solution:

�Lemma: Max Entropy -> independence

assumption

�Lin-Reg should do better on smooth

distributions
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5.2. Data Integration

�given (some) monthly sums

� (some) weekly sums and

� (some) daily amounts

�estimate all daily sales
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Specifically:

�minimize

F(
→
x ) = Σ

i=1

N−1

(xi −xi+1)
2

Cmonthly,i(
→
x ) =0

Cweekly,j(
→
x ) =0
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5.3 Missing values

�Lin-Reg works, while uniformity/Max

Entropy do not!
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�Lin-Reg -> good reconstruction

�up to 89% better RMSE

�Lemmas: Max Entropy -> Uniformity and

Independence assumptions

�Theorem that guarantees perfect

reconstruction

�Theory of Inverse Problems: seems

valuable for DB.

6. CONCLUSIONS
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