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What is an outlier?
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What is an outlier?

“An outlier is an observation

.o, that deviates so much from
. o %00 other observations as to
° % arouse suspicions that it was

generated by a different
mechanism” [Hawkins 80]
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Why outlier detection?
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Why outlier detection?

* Rare events, exceptions, alerts
e Surveillance / auditing

» Health monitoring

» Stock market analysis
 cyber-security
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Requirements

* Fast
— Large datasets
— Single pass over the data
¢ Multi-dimensional
— Arbitrary (numeric) tuples
* Limited/simple user intervention
— No “magic cut-offs”
— Intuitive criteria for flagging outliers
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Assumptions

* Metric space
— Distance provided (by “expert”)

OR

¢ Vector space (d dimensions) with some Lp
norm
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Overview

* Related work
* Definitions
e Approximate estimation

» Experimental results
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Distribution Based

e Assume data are drawn from a
certain distribution (model)
— E.g., multivariate Gaussian

¢ Estimate the model

* Identify points that do not fit well
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Distribution Based

¢ Assume data are drawn from a certain
distribution (model)
— E.g., multivariate Gaussian

¢ Estimate the model

* Identify points that do not fit well

* Prior knowledge of distribution, or

» Expensive statistical tests to
determine suitable model

» Typically few degrees of freedom

— E.g., O(dim?) (covariance matrix)
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Clustering by-products

* OQutlier is a “cluster”
— One point
— Very few points (“micro-cluster”)
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Clustering by-products

* Outlier is a “cluster”
— One point
— Very few points (“micro-cluster”)

 Potentially much unnecessary
work

(=)« Implicit outlier-ness criteria
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Depth based

[Johnson, Kwok, Ng 98]
* Computational geometry
* Compute several layers of
convex hull — depth contours
[Tukey 75]
* Points in outer layers are more
likely to be outliers
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Depth based

[Johnson, Kwok, Ng 98]
* Computational geometry

» Compute several layers of convex
hull — depth contours [Tukey 75]

* Points in outer layers are more likely
to be outliers

» Exponential growth with
dimensionality

— Unsuitable for high dimensions
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Distance based
Overview [Knorr, Ng 98]

* Point x is an outlier iff
#(points at distance > R) > a % #points
where R, a: are global parameters
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Distance based
Assumptions [Knorr, Ng 98]
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* One global criterion
* Local density variations
Global may not be enough...
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Density based (LOF)

Overview [Breuning, Kriegel, Ng etal 00]
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* Compute (smoothed) average neighbor distance
(over m neighbors)

* Compare against average of averages
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Density based (LOF)

Overview [Breuning, Kriegel, Ng etal 00]

o o o
E.g.,.m=3
o o o
. o o o o o
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gsoooo o o o o o
0000
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o o o o o

¢ Local Outlier Factor (LOF)

avg. distance of m nearest neighbours of p

LOF(p, m) = - - - -
avg. of avg. distance of m nearest neighbours
over the m nearest neighbours of p
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Density based

Assumptions

ooo
000
000

e Multiple granularity

e Here, m > 9 (micro-cluster size)

¢ If m < 9,then none are outliers (LOF = 1)
Local may not be enough either...
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Contributions

* Multi-scale

— Complete distance distribution...

— ...around each point
* Fast estimation

— Practically linear in #points and dimensions

— First use of approximate estimation in outlier detection
e “Natural” cut-off

— Probabilistically intuitive, data-dictated
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Overview

* Related work
¢ Definitions
* Approximate estimation

* Experimental results
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Main questions/ideas:

¢ QI: What is a neighbor?

¢ Q2: how to measure difference from
neighbors?

¢ Q3: how much difference is ‘too much’?

15-826 (c) C. Faloutsos + S. Papadimitriou (2005) 23

% CMU SCS

Comparing distances

Q1: who is a neighbor?
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°
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Comparing distances
Q1: who is a neighbor? A: all within distance r

Q1’: how to choose r? : o ©
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Comparing distances

r
© o
Di ° % o
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sampling n?\)%hbourhood
o C.

.Pl o ° ° ° o
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Main questions/ideas:
‘/QI: What is a neighbor?
ﬂ * Q2: how to measure difference from
neighbors?
¢ Q3: how much difference is ‘too much’?
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Comparing distances
n(p;,r)=2
countiné
neighbourhood
a=1/3 A
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Main questions/ideas:
¥ Q1: What is a neighbor?
ﬂ * Q2: how to measure difference from
neighbors?
* A: count the number of neighbors!
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Comparing distances
n(p;,r)=2
- _ 246
np,r, a)= 19
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Comparing distances

_ 24647
a 19
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Comparing distances
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Main questions/ideas:

¥ Q1: What is a neighbor?

Q2: how to measure difference from
neighbors?

¢ Q3: how much difference is ‘too much’?
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Main questions/ideas:

¥ Q1: What is a neighbor?

Q2: how to measure difference from
neighbors?

¢ Q3: how much difference is ‘too much’?
e A:3std away (or k std)
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Comparing distances
n(p;,r)=2
n(p.r,a)=821 (average)

G,(p, r, a)=2.01 (std.dev.)

r;(p,, r,a)—n(p, ar) > 3c,(p,, 1, a)

k

Neighbor counts:
2666677778

88888999999
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Main questions/ideas:

¥ Q1: What is a neighbor?
* A: everybody within distance r
q — Q1’: how to choose r ?
- A:
\/QZ: how to measure difference from
neighbors?
Q3: how much difference is ‘too much’?
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Main questions/ideas:

¥ Q1: What is a neighbor?
* A: everybody within distance r
— Q1’: how to choose r ?
— A: don’t choose it - MANY r ‘s!
Q2: how to measure difference from
neighbors?
Q3: how much difference is ‘too much’?

g CMU SCS
End result:

* LOCI plot for each point p
¢ (LOCI = LOcal Correlation Integral)
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LOCI plot
Definition
#points e
Jg n
=
=}
@]
n
7” T radius
¢ Plot of
{count n) .
R ¢ Vvs. radius

(avg A)t k_ x(std dev &)
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LOCI plot
Definition

#points

Counts

radius
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LOCI plot
Definition
#points e
£ n
=
=}
o}
count of neighbors for point p
at distance r
T radius
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LOCI plot
Definition
#points SR I
£ n —_ 05 std of neighbors of neighbors
/on
77777 T radius
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LOCI plot

#points

Counts

radius

¢ Point is an outlier (at “scale” r) iff
the green line is outside the gray band!
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LOCI plot

#points

Counts

radius

¢ Point is an outlier (at “scale” r) iff
the green line is outside the gray band!
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LOCI plot

#points

Counts

/ /lon
/ count of neighbors for poi
y g point p
at distance r

radius
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Suppose that the green curve is a line in log-log scales
with slope 1.58. What is your conclusion about point p ?
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LOCI plot

Properties

Micro - Dataset o Outstanding outlier
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LOCI plot

Properties
Micro - Dataset o Outstanding outlier
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Properties
Outstanding outlier
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Overview

e Related work
¢ Definitions
* Approximate estimation

* Experimental results
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Speed?

e seems quadratic or worse:
— for every radius, count the neighbors,
— the neighbors of the neighbors
— and the std of them

* How to ‘cut corners’?
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Box counting
Introduction by example

Exact
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Box counting
Introduction by example
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o
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Box counting
Introduction by example
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| b Approximate:

: o 1 - impose a grid of side r

\ o r + squares (L-infinity)

L —o| = o * Not necessarily centered
(inspired by box-counting)
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Box counting
Introduction by example

. o o
o © o
o Approximate:
° - impose a grid of side r
o, ° - squares (L-infinity)
ol o * Not necessarily centered

(inspired by box-counting)
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Quad-trees

e Cell side (radius) can

e Quad-trees:
- Split each cell into 2¢

be arbitrary, however...

Quad-trees

e Store only counters
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sub-cells
- Small depth, easy
updates
Radii = powers of 2
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Overview

* Related work
* Definitions
* Approximate estimation

» Experimental results

15-826 (c) C. Faloutsos + S. Papadimitriou (2005) 57

% CMU SCS
Synthetic — LOCI

. Dens - Positive Deviation (3ouper: 22/401) Positive Deviation (3oyper: 30/615)
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NBA — LOCI

Positive Deviation (3oyogr: 13/459)
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15-826 (c) C. Faloutsos + S. Papadimitriou (2005) 58
% CMU SCS
.
Conclusion

* Multi-scale

— Complete distance distribution...

— ...around each point
» Fast estimation

— Box-counting, practically linear

— First use of approximate estimation in outlier detection
e “Natural” cut-off

— Probabilistically intuitive, data-dictated
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