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Outline

Goal: ‘Find similar / interesting things’

• Intro to DB

• Indexing - similarity search

• Data Mining
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Data Mining - Detailed outline

• Statistics

• AI - decision trees

– Problem

– Approach

– Conclusions

• DB
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Decision Trees

• Problem: Classification - Ie., 

• given a training set (N tuples, with M attributes, 
plus a label attribute)

• find rules, to predict the label for newcomers

Pictorially:
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Decision trees

Age Chol-level Gender … CLASS-ID

30 150 M +

…

-

??
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Decision trees

• issues:

– missing values

– noise

– ‘rare’ events
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Decision trees

• types of attributes

– numerical (= continuous) - eg: ‘salary’

– ordinal (= integer) - eg.: ‘# of children’

– nominal (= categorical) - eg.: ‘car-type’
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Decision trees

• Pictorially, we have

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--
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Decision trees

• and we want to label ‘?’

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

?
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Decision trees

• so we build a decision tree:

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

?

50

40
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Decision trees

• so we build a decision tree:

age<50

Y

+ chol. <40

N

- ...

Y N
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Data Mining - Detailed outline

• Statistics

• AI - decision trees

– Problem

– Approach

– Conclusions

• DB
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Decision trees

• Typically, two steps:

– tree building

– tree pruning (for over-training/over-fitting)
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Tree building

• How?

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--
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Tree building

• How?

• A: Partition, recursively - pseudocode:

Partition ( Dataset S)

if all points in S have same label

then return

evaluate splits along each attribute A

pick best split, to divide S into S1 and S2

Partition(S1); Partition(S2)
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Tree building

• Q1: how to introduce splits along attribute 

Ai

• Q2: how to evaluate a split?
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Tree building

• Q1: how to introduce splits along attribute Ai

• A1:

– for num. attributes:

• binary split, or

• multiple split

– for categorical attributes:

• compute all subsets (expensive!), or

• use a greedy algo
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Tree building

• Q1: how to introduce splits along attribute 

Ai

• Q2: how to evaluate a split?
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Tree building

• Q1: how to introduce splits along attribute 

Ai

• Q2: how to evaluate a split?

• A: by how close to uniform each subset is -

ie., we need a measure of uniformity:
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Tree building

entropy: H(p+, p-)

p+10

0

1

0.5

Any other measure?
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Tree building

entropy: H(p+, p-)

p+10

0

1

0.5

‘gini’ index: 1-p+
2 - p-

2

p+10

0

1

0.5
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Tree building

entropy: H(p+, p-) ‘gini’ index: 1-p+
2 - p-

2

(How about multiple labels?)
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Tree building

Intuition:

• entropy: #bits to encode the class label

• gini: classification error, if we randomly 

guess ‘+’ with prob. p+
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Tree building

Thus, we choose the split that reduces 

entropy/classification-error the most: Eg.:

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--
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Tree building

• Before split: we need

(n+ + n-) * H( p+, p-) = (7+6) * H(7/13, 6/13) 

bits total, to encode all the class labels

• After the split we need:

0 bits                               for the first half and

(2+6) * H(2/8, 6/8) bits   for the second half
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Data Mining - Detailed outline

• Statistics

• AI - decision trees

– Problem

– Approach

• tree building

• tree pruning

– Conclusions

• DB
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Tree pruning

• What for?

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

...
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Tree pruning

• Q: How to do it?

num. attr#1 (eg., ‘age’)

num. attr#2

(eg., chol-level)

+

-+
+ +

+
+

+

-

-
-

--

...
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Tree pruning

• Q: How to do it?

• A1: use a ‘training’ and a ‘testing’ set -
prune nodes that improve classification in 
the ‘testing’ set. (Drawbacks?)
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Tree pruning

• Q: How to do it?

• A1: use a ‘training’ and a ‘testing’ set -
prune nodes that improve classification in 
the ‘testing’ set. (Drawbacks?)

• A2: or, rely on MDL (= Minimum 
Description Language) - in detail:
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Tree pruning

• envision the problem as compression (of 
what?)
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Tree pruning

• envision the problem as compression (of 
what?)

• and try to min. the # bits to compress

(a) the class labels AND

(b) the representation of the decision tree
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(MDL)

• a brilliant idea - eg.: best n-degree 
polynomial to compress these points:

• the one that minimizes (sum of errors + n )
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Conclusions

• Classification through trees

• Building phase - splitting policies

• Pruning phase (to avoid over-fitting)

• Observation: classification is subtly related 
to compression
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